IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v208y2024ics0040162524004517.html
   My bibliography  Save this article

Sowing the seeds for sustainability: A business model innovation perspective on artificial intelligence in green technology startups

Author

Listed:
  • Jorzik, Philip
  • Antonio, Jerome L.
  • Kanbach, Dominik K.
  • Kallmuenzer, Andreas
  • Kraus, Sascha

Abstract

In today's data-driven era, ubiquitous concern about environmental issues pushes more startups to engage in business model innovation that promotes environmentally friendly technologies. The goal of these startups is to create technology-based products and services that enhance environmental sustainability. In this context, artificial intelligence promises to be a key instrument to create, capture, and deliver value. However, the existing literature lacks a deep understanding of how startups using AI innovate their business models to achieve a positive environmental impact. Therefore, this paper investigates how green technology startups utilize AI from a business model innovation perspective for environmental sustainability. We conduct a qualitative, exploratory multiple-case study using the Eisenhardt methodology, based on interview data analyzed using qualitative content analysis. We derive five predominant manifestations for AI-driven business model innovation and identify archetypical connections between business model dimensions. Further, we establish three overarching archetypical associations among the cases. In doing so, we contribute to theory and practice by providing a deeper account of how green technology startups attempt to maximize their positive environmental impact through AI. The results of this study also highlight how business model innovation driven by AI can support society in securing a more environmentally sustainable future.

Suggested Citation

  • Jorzik, Philip & Antonio, Jerome L. & Kanbach, Dominik K. & Kallmuenzer, Andreas & Kraus, Sascha, 2024. "Sowing the seeds for sustainability: A business model innovation perspective on artificial intelligence in green technology startups," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524004517
    DOI: 10.1016/j.techfore.2024.123653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524004517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524004517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.