IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v182y2024ics0148296324002686.html
   My bibliography  Save this article

AI-driven business model innovation: A systematic review and research agenda

Author

Listed:
  • Jorzik, Philip
  • Klein, Sascha P.
  • Kanbach, Dominik K.
  • Kraus, Sascha

Abstract

Recent years have seen a surge in research on artificial intelligence (AI)-driven business model innovation (BMI), reflecting its profound impact across industries. However, the field’s current state remains fragmented due to varied conceptual lenses and units of analysis. Existing literature predominantly emphasizes the technological aspects of AI implementation in business models (BMs), treating BMI as a byproduct. Additionally, there is a lack of coherent understanding regarding the scope of BMI propelled by AI. To address these gaps, our study systematically reviews 180 articles, offering two key contributions: (1) a structured analysis of evolving research dimensions in AI-driven BMI, differentiating between static and dynamic views of BMI, and (2) a framework presenting distinct research perspectives on AI-driven BMI, each addressing specific managerial focuses. This synthesis facilitates a comprehensive understanding of the field, enabling the identification of research gaps and proposing future avenues for advancing knowledge on the management of AI-driven BMI.

Suggested Citation

  • Jorzik, Philip & Klein, Sascha P. & Kanbach, Dominik K. & Kraus, Sascha, 2024. "AI-driven business model innovation: A systematic review and research agenda," Journal of Business Research, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:jbrese:v:182:y:2024:i:c:s0148296324002686
    DOI: 10.1016/j.jbusres.2024.114764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296324002686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2024.114764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:182:y:2024:i:c:s0148296324002686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.