IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v203y2024ics0040162524001811.html
   My bibliography  Save this article

Assessment framework for automotive suppliers' technological adaptability in the electric vehicle era

Author

Listed:
  • Yoon, Naeun
  • Sohn, So Young

Abstract

As car original equipment manufacturers (OEMs) announce the electrification of their product line-ups, assessing the technological adaptability of their suppliers in the electric vehicle (EV) era is necessary. The technological adaptability of a supplier can vary significantly in terms of accumulated technologies. Herein, we propose a framework to assess adaptability from two aspects—EV-related and pivoting—based on patent portfolio analysis. First, adaptability to EV-related technologies is evaluated in terms of a supplier's patents applied individually and copatents with OEMs for parts to be modified. The degree of similarity of the patents related to internal combustion engine vehicle (ICEV) components with the patents related to EVs is calculated using PatentSBERTa, which reflects the modification degree required for ICEV components to be suitable for EVs. Second, we utilize automotive industry-related and unrelated diversity based on the entropy of International Patent Classification (IPC) codes to measure the supplier's technological adaptability to pivot within the automotive industry or other industries. The framework is empirically applied to suppliers in the drivetrain and climate control sectors to assess their technological adaptability to supply EV parts associated with the parts they are delivering. Our framework is expected to provide transition strategies for automotive suppliers in the EV era.

Suggested Citation

  • Yoon, Naeun & Sohn, So Young, 2024. "Assessment framework for automotive suppliers' technological adaptability in the electric vehicle era," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:tefoso:v:203:y:2024:i:c:s0040162524001811
    DOI: 10.1016/j.techfore.2024.123385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524001811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Janghyeok & Park, Hyunseok & Seo, Wonchul & Lee, Jae-Min & Coh, Byoung-youl & Kim, Jonghwa, 2015. "Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 153-167.
    2. Wen, Jinyan & Qualls, William J. & Zeng, Deming, 2021. "To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes," Technovation, Elsevier, vol. 100(C).
    3. Nicholas Bloom & Mark Schankerman & John Van Reenen, 2013. "Identifying Technology Spillovers and Product Market Rivalry," Econometrica, Econometric Society, vol. 81(4), pages 1347-1393, July.
    4. Arts, Sam & Hou, Jianan & Gomez, Juan Carlos, 2021. "Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures," Research Policy, Elsevier, vol. 50(2).
    5. Tilmann Rave & Frank Goetzke, 2013. "Climate-friendly technologies in the mobile air-conditioning sector: a patent citation analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 389-422, October.
    6. Yuan, Xiaodong & Li, Xiaotao, 2020. "A network analytic method for measuring patent thickets: A case of FCEV technology," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    7. Hertenstein, Peter & Williamson, Peter J., 2018. "The role of suppliers in enabling differing innovation strategies of competing multinationals from emerging and advanced economies: German and Chinese automotive firms compared," Technovation, Elsevier, vol. 70, pages 46-58.
    8. Hiroko Nakamura & Shinji Suzuki & Yuya Kajikawa & Masataka Osawa, 2015. "The effect of patent family information in patent citation network analysis: a comparative case study in the drivetrain domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 437-452, August.
    9. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    10. Marianna Makri & Michael A. Hitt & Peter J. Lane, 2010. "Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions," Strategic Management Journal, Wiley Blackwell, vol. 31(6), pages 602-628, June.
    11. Suzuki, Jun & Kodama, Fumio, 2004. "Technological diversity of persistent innovators in Japan: Two case studies of large Japanese firms," Research Policy, Elsevier, vol. 33(3), pages 531-549, April.
    12. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    13. Bergek, Anna & Berggren, Christian & Magnusson, Thomas & Hobday, Michael, 2013. "Technological discontinuities and the challenge for incumbent firms: Destruction, disruption or creative accumulation?," Research Policy, Elsevier, vol. 42(6), pages 1210-1224.
    14. Hamid Bekamiri & Daniel S. Hain & Roman Jurowetzki, 2021. "PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT," Papers 2103.11933, arXiv.org, revised Oct 2021.
    15. An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
    16. Gemba, Kiminori & Kodama, Fumio, 2001. "Diversification dynamics of the Japanese industry," Research Policy, Elsevier, vol. 30(8), pages 1165-1184, October.
    17. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    18. Anja Schulze & John Paul MacDuffie & Florian A. Täube, 2015. "Introduction: knowledge generation and innovation diffusion in the global automotive industry—change and stability during turbulent times," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(3), pages 603-611.
    19. Thomas J. Hannigan & Marcelo Cano-Kollmann & Ram Mudambi, 2015. "Thriving innovation amidst manufacturing decline: the Detroit auto cluster and the resilience of local knowledge production," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(3), pages 613-634.
    20. Hielke Buddelmeyer & Paul H. Jensen & Elizabeth Webster, 2010. "Innovation and the determinants of company survival," Oxford Economic Papers, Oxford University Press, vol. 62(2), pages 261-285, April.
    21. Yakob, Ramsin & Nakamura, H. Richard & Ström, Patrik, 2018. "Chinese foreign acquisitions aimed for strategic asset-creation and innovation upgrading: The case of Geely and Volvo Cars," Technovation, Elsevier, vol. 70, pages 59-72.
    22. Kim, Jungho & Lee, Chang-Yang & Cho, Yunok, 2016. "Technological diversification, core-technology competence, and firm growth," Research Policy, Elsevier, vol. 45(1), pages 113-124.
    23. Belderbos, René & Cassiman, Bruno & Faems, Dries & Leten, Bart & Van Looy, Bart, 2014. "Co-ownership of intellectual property: Exploring the value-appropriation and value-creation implications of co-patenting with different partners," Research Policy, Elsevier, vol. 43(5), pages 841-852.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weidong Jiang & Naiwen Li, 2024. "The Intelligent Upgrading of Logistics between an Internet Enterprise and a Logistics Enterprise Based on Differential Game Theory," Sustainability, MDPI, vol. 16(19), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    2. Katsuyuki Kaneko & Yuya Kajikawa, 2023. "Novelty Score and Technological Relatedness Measurement Using Patent Information in Mergers and Acquisitions: Case Study in the Japanese Electric Motor Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(2), pages 163-177, June.
    3. Wen, Jinyan & Li, Jian & Zhou, Qing & Zeng, Deming & Harms, Rainer, 2023. "How firms support formal standardization: The role of alliance portfolio and internal technological diversity," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    4. Duan, Yunlong & Deng, Zhiqing & Liu, Hanxiao & Yang, Meng & Liu, Meiwu & Wang, Xiang, 2022. "Exploring the mediating effect of managerial ability on knowledge diversity and innovation performance in reverse cross-border M&As: Evidence from Chinese manufacturing corporations," International Journal of Production Economics, Elsevier, vol. 247(C).
    5. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. McCarthy, Killian J & Aalbers, Hendrik Leendert, 2022. "Alliance-to-acquisition transitions: The technological performance implications of acquiring one's alliance partners," Research Policy, Elsevier, vol. 51(6).
    7. Hohberger, Jan & Almeida, Paul & Parada, Pedro, 2015. "The direction of firm innovation: The contrasting roles of strategic alliances and individual scientific collaborations," Research Policy, Elsevier, vol. 44(8), pages 1473-1487.
    8. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    9. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    10. Christoph Grimpe & Katrin Hussinger & Wolfgang Sofka, 2023. "Reaching beyond the acquirer-Target Dyad in M&A – Linkages to External knowledge sources and target firm valuation," DEM Discussion Paper Series 23-01, Department of Economics at the University of Luxembourg.
    11. Banal-Estañol, Albert & Duso, Tomaso & Seldeslachts, Jo & Szücs, Florian, 2022. "R&D Spillovers through RJV Cooperation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 51(4), pages 1-10.
    12. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    13. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    14. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    15. Figueroa, Nicolás & Serrano, Carlos J., 2019. "Patent trading flows of small and large firms," Research Policy, Elsevier, vol. 48(7), pages 1601-1616.
    16. Koki Oikawa & Minoru Kitahara, 2017. "Technology Polarization," Working Papers e113, Tokyo Center for Economic Research.
    17. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    18. Zhu, Shanshan & Hagedoorn, John & Zhang, Shuhui & Liu, Fengchao, 2021. "Effects of technological distance on innovation performance under heterogeneous technological orientations," Technovation, Elsevier, vol. 106(C).
    19. Jun Hong Park & Hyunseog Chung & Ki Hong Kim & Jin Ju Kim & Chulung Lee, 2021. "The Impact of Technological Capability on Financial Performance in the Semiconductor Industry," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    20. Steffen Runge & Christian Schwens & Matthias Schulz, 2022. "The invention performance implications of coopetition: How technological, geographical, and product market overlaps shape learning and competitive tension in R&D alliances," Strategic Management Journal, Wiley Blackwell, vol. 43(2), pages 266-294, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:203:y:2024:i:c:s0040162524001811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.