IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v15y2013i4p389-422.html
   My bibliography  Save this article

Climate-friendly technologies in the mobile air-conditioning sector: a patent citation analysis

Author

Listed:
  • Tilmann Rave
  • Frank Goetzke

Abstract

The development of climate-friendly technologies and its diffusion across countries is of key importance to slow climate change. This paper considers technologies in the mobile air-conditioning (MAC) sector which is a major contributor of fluorinated greenhouse gas emissions. Using patents as an indicator of innovations and patent citations as a proxy for knowledge flows, the inducement of new environmental and non-environmental technologies and knowledge diffusion within and across countries are analysed. The focus is on direct abatement of fluorinated greenhouse gases excluding energy efficiency improvements. We find that most environmental MAC patents originate from the US and Germany. Most knowledge flows take place within countries. Regarding cross-country flows most environmental knowledge diffuses from French and German patents, which is likely to be a result of regulatory activities in Europe and intensified research on environmentally benign MAC systems. Yet, this exchange of knowledge is not very intensive and stable so that the impact of EU regulations on US and Japanese patenting behaviour seems to be fairly weak. Copyright Springer Japan 2013

Suggested Citation

  • Tilmann Rave & Frank Goetzke, 2013. "Climate-friendly technologies in the mobile air-conditioning sector: a patent citation analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 389-422, October.
  • Handle: RePEc:spr:envpol:v:15:y:2013:i:4:p:389-422
    DOI: 10.1007/s10018-013-0069-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10018-013-0069-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10018-013-0069-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rennings, Klaus & Beise, Marian, 2003. "Lead Markets of Environmental Innovations: A Framework for Innovation and Environmental Economics," ZEW Discussion Papers 03-01, ZEW - Leibniz Centre for European Economic Research.
    2. Beise, Marian & Rennings, Klaus, 2005. "Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations," Ecological Economics, Elsevier, vol. 52(1), pages 5-17, January.
    3. de Saint-Georges, Matthis & van Pottelsberghe de la Potterie, Bruno, 2013. "A quality index for patent systems," Research Policy, Elsevier, vol. 42(3), pages 704-719.
    4. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    5. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    6. Dekker, Thijs & Vollebergh, Herman R.J. & de Vries, Frans P. & Withagen, Cees A., 2012. "Inciting protocols," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 45-67.
    7. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    8. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    9. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    10. Frauke G. Braun & Liz Hooper & Robert Wand & Petra Zloczysti, 2010. "Innovation in Concentrating Solar Power Technologies: A Study Drawing on Patent Data," Discussion Papers of DIW Berlin 994, DIW Berlin, German Institute for Economic Research.
    11. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    12. Christoph Jeßberger, 2011. "Multilateral Environmental Agreements up to 2050: Are They Sustainable Enough?," ifo Working Paper Series 98, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    13. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2004. "Technological change and depletion in offshore oil and gas," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 388-409, March.
    14. Elena Verdolini & Marzio Galeotti, 2009. "At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies," Working Papers 2009.123, Fondazione Eni Enrico Mattei.
    15. Giovanni Peri, 2005. "Determinants of Knowledge Flows and Their Effect on Innovation," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 308-322, May.
    16. Adam Jaffe & Manuel Trajtenberg, 1999. "International Knowledge Flows: Evidence From Patent Citations," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 8(1-2), pages 105-136.
    17. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    18. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    19. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    20. Frank Goetzke & Tilmann Rave & Ursula Triebswetter, 2012. "Diffusion of environmental technologies: a patent citation analysis of glass melting and glass burners," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(2), pages 189-217, April.
    21. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    22. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    23. Klaus Rennings & Christian Rammer, 2011. "The Impact of Regulation-Driven Environmental Innovation on Innovation Success and Firm Performance," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 255-283.
    24. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    25. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    26. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    27. de Vries, F.P. & Withagen, C.A.A.M., 2005. "Innovation and environmental stringency : The case of sulfur dioxide abatement," Other publications TiSEM 9f3f79ab-2646-4f72-845c-4, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Zimmer & Rahel Aichele & Anna Sophia Ciesielski & Julian Dieler & Ana Maria Montoya Gómez & Tilmann Rave, 2017. "Integrated Assessment of the Instruments and the Fiscal and Market-Based Incentives of International Climate Change Policies and their Impacts (IACCP)," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 81.
    2. Raffaele Anedda, 2021. "La qualité technologique des brevets : deux lectures structurales," Post-Print halshs-03289528, HAL.
    3. Yoon, Naeun & Sohn, So Young, 2024. "Assessment framework for automotive suppliers' technological adaptability in the electric vehicle era," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    4. George Halkos & Antonis Skouloudis, 2021. "Environmental technology development and diffusion: panel data evidence from 56 countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 79-92, January.
    5. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Mafini Dosso & Didier Lebert, 2019. "A geography of corporate knowledge flows across world regions: evidence from patent citations of top R&D-investing firms," JRC Working Papers on Corporate R&D and Innovation 2019-03, Joint Research Centre.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    2. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    3. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    4. Popp, David, 2012. "The role of technological change in green growth," Policy Research Working Paper Series 6239, The World Bank.
    5. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    6. Dechezlepretre, Antoine & Perkins, Richard & Neumayer, Eric, 2012. "Regulatory Distance and the Transfer of New Environmentally Sound Technologies: Evidence from the Automobile Sector," Climate Change and Sustainable Development 128199, Fondazione Eni Enrico Mattei (FEEM).
    7. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    8. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    9. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    10. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    11. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    12. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    13. Antoine Dechezleprêtre & Matthieu Glachant & Yann Ménière, 2013. "What Drives the International Transfer of Climate Change Mitigation Technologies? Empirical Evidence from Patent Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 161-178, February.
    14. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    15. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    16. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
    17. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    18. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    19. Tobias Stucki & Martin Woerter, 2017. "Green Inventions: Is Wait-and-see a Reasonable Option?," The Energy Journal, , vol. 38(4), pages 43-72, July.
    20. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    21. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    22. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.

    More about this item

    Keywords

    Environmental innovation; Patent; Count data models; Spillover; Q55; 033; 038; C21;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:15:y:2013:i:4:p:389-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.