IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v196y2023ics0040162523005115.html
   My bibliography  Save this article

Evaluating maturity level of big data management and analytics in industrial companies

Author

Listed:
  • Corallo, Angelo
  • Crespino, Anna Maria
  • Del Vecchio, Vito
  • Gervasi, Massimiliano
  • Lazoi, Mariangela
  • Marra, Manuela

Abstract

Manufacturing companies usually ignore their current state of big data and analytics implementation, losing the opportunity to achieve high-performance targets. An evaluation through maturity models can support companies to better focalise their initiatives. However, the existing maturity models only focus on big data, and they lack of a scientific development approach and applications. They are also general in scope and not specific for manufacturing scenarios.

Suggested Citation

  • Corallo, Angelo & Crespino, Anna Maria & Del Vecchio, Vito & Gervasi, Massimiliano & Lazoi, Mariangela & Marra, Manuela, 2023. "Evaluating maturity level of big data management and analytics in industrial companies," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:tefoso:v:196:y:2023:i:c:s0040162523005115
    DOI: 10.1016/j.techfore.2023.122826
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523005115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    2. Aljumah, Ahmad Ibrahim & Nuseir, Mohammed T. & Alam, Md. Mahmudul, 2021. "Organizational Performance and Capabilities to Analyze Big Data: Do the Ambidexterity and Business Value of Big Data Analytics Matter?," OSF Preprints an8er, Center for Open Science.
    3. Jörg Becker & Ralf Knackstedt & Jens Pöppelbuß, 2009. "Developing Maturity Models for IT Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(3), pages 213-222, June.
    4. Claudio Vitari & Elisabetta Raguseo, 2020. "Big data analytics business value and firm performance: linking with environmental context," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5456-5476, September.
    5. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    6. Urbinati, Andrea & Bogers, Marcel & Chiesa, Vittorio & Frattini, Federico, 2019. "Creating and capturing value from Big Data: A multiple-case study analysis of provider companies," Technovation, Elsevier, vol. 84, pages 21-36.
    7. Hausladen, Iris & Schosser, Maximilian, 2020. "Towards a maturity model for big data analytics in airline network planning," Journal of Air Transport Management, Elsevier, vol. 82(C).
    8. Celina M. Olszak & Maria Mach-Król, 2018. "A Conceptual Framework for Assessing an Organization’s Readiness to Adopt Big Data," Sustainability, MDPI, vol. 10(10), pages 1-31, October.
    9. Bruce R Lewis & Gary F Templeton & Terry Anthony Byrd, 2005. "A methodology for construct development in MIS research," European Journal of Information Systems, Taylor & Francis Journals, vol. 14(4), pages 388-400, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Guoqing & Xie, Xiaotian & Wang, Yi & Liu, Shaofeng & Jones, Paul & Lopez, Carmen, 2024. "Barrier analysis to improve big data analytics capability of the maritime industry: A mixed-method approach," Technological Forecasting and Social Change, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dignity Paradza & Olawande Daramola, 2021. "Business Intelligence and Business Value in Organisations: A Systematic Literature Review," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    2. Huynh, Minh-Tay & Nippa, Michael & Aichner, Thomas, 2023. "Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    3. Pan, Qiaohong & Luo, Wenping & Fu, Yi, 2022. "A csQCA study of value creation in logistics collaboration by big data: A perspective from companies in China," Technology in Society, Elsevier, vol. 71(C).
    4. Justy, Théo & Pellegrin-Boucher, Estelle & Lescop, Denis & Granata, Julien & Gupta, Shivam, 2023. "On the edge of Big Data: Drivers and barriers to data analytics adoption in SMEs," Technovation, Elsevier, vol. 127(C).
    5. Rajesh Chidananda Reddy & Biplab Bhattacharjee & Debasisha Mishra & Anandadeep Mandal, 2022. "A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy," Information Systems and e-Business Management, Springer, vol. 20(1), pages 223-255, March.
    6. Ragmoun Wided, 2023. "IT Capabilities, Strategic Flexibility and Organizational Resilience in SMEs Post-COVID-19: A Mediating and Moderating Role of Big Data Analytics Capabilities," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(1), pages 123-142, March.
    7. Tugba Karaboga & Cemal Zehir & Ekrem Tatoglu & H. Aykut Karaboga & Abderaouf Bouguerra, 2023. "Big data analytics management capability and firm performance: the mediating role of data-driven culture," Review of Managerial Science, Springer, vol. 17(8), pages 2655-2684, November.
    8. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    9. Helena Holter Antonsen & Dag Øivind Madsen, 2021. "Developing a Maturity Model for the Compliance Function of Investment Firms: A Preliminary Case Study from Norway," Administrative Sciences, MDPI, vol. 11(4), pages 1-34, October.
    10. Ladi Daodu & Prof. Dr. Amiya Bhaumik, 2024. "Impacts of Innovation and Business Analytics on the Performance of the Service Sector in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 77-91, June.
    11. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    12. Michele Gorgoglione & Achille Claudio Garavelli & Umberto Panniello & Angelo Natalicchio, 2023. "Information Retrieval Technologies and Big Data Analytics to Analyze Product Innovation in the Music Industry," Sustainability, MDPI, vol. 15(1), pages 1-16, January.
    13. Pelau Corina & Barbul Maria, 2021. "Consumers’ perception on the use of cognitive computing," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 639-649, December.
    14. Ehsan Samiei & Jafar Habibi, 2020. "The Mutual Relation Between Enterprise Resource Planning and Knowledge Management: A Review," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 53-66, March.
    15. Maniyassouwe Amana & Pingfeng Liu & Mona Alariqi, 2022. "Value Creation and Capture with Big Data in Smart Phones Companies," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    16. Li, Lei & Lin, Jiabao & Ouyang, Ye & Luo, Xin (Robert), 2022. "Evaluating the impact of big data analytics usage on the decision-making quality of organizations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    17. Arpan Kumar Kar & P. S. Varsha & Shivakami Rajan, 2023. "Unravelling the Impact of Generative Artificial Intelligence (GAI) in Industrial Applications: A Review of Scientific and Grey Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 659-689, December.
    18. Ashish Kumar Rathore & Santanu Das & P. Vigneswara Ilavarasan, 2018. "Social Media Data Inputs in Product Design: Case of a Smartphone," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(3), pages 255-272, September.
    19. Fatimah, A. W. & Kamaruddin M, K, A. & Lukman, Z. M & T. M. Zukri & Norashida, S. R & Azizah, I., 2023. "Content Validity of Questionnaire on the Influence of Housing Affordability Factors on the Well-Being of the B40 Group Using the Content Validity Ratio (CVR)," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(10), pages 898-908, October.
    20. Shivam Gupta & Vinayak A. Drave & Surajit Bag & Zongwei Luo, 2019. "Leveraging Smart Supply Chain and Information System Agility for Supply Chain Flexibility," Information Systems Frontiers, Springer, vol. 21(3), pages 547-564, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:196:y:2023:i:c:s0040162523005115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.