IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v7y2021i1d10.1186_s40854-021-00261-1.html
   My bibliography  Save this article

A predictive indicator using lender composition for loan evaluation in P2P lending

Author

Listed:
  • Yanhong Guo

    (Dalian University of Technology)

  • Shuai Jiang

    (Dalian University of Technology)

  • Wenjun Zhou

    (University of Tennessee)

  • Chunyu Luo

    (Dalian University of Technology)

  • Hui Xiong

    (Rutgers University)

Abstract

Most loan evaluation methods in peer-to-peer (P2P) lending mainly exploit the borrowers’ credit information. However, the present study presents the maturity-based lender composition score, which exploits the investment capability of a group of lenders who fund the same loan, to enhance the P2P loan evaluation. More specifically, we extract lenders’ profiles in terms of performance, risk, and experience by quantifying their investment history and develop our loan evaluation indicator by aggregating the profiles of lenders in the composition. To measure the ability of a lender for continuous improvement in P2P investment, we introduce lender maturity to capture this evolvement and incorporate it into the aggregation process. Our empirical study demonstrates that the maturity-based lender composition score can serve as an effective indicator for identifying loan quality and be included in other commonly used loan evaluation models for accuracy improvement.

Suggested Citation

  • Yanhong Guo & Shuai Jiang & Wenjun Zhou & Chunyu Luo & Hui Xiong, 2021. "A predictive indicator using lender composition for loan evaluation in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
  • Handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00261-1
    DOI: 10.1186/s40854-021-00261-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-021-00261-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-021-00261-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    2. Manel Baucells & Silvia Bellezza, 2017. "Temporal Profiles of Instant Utility During Anticipation, Event, and Recall," Management Science, INFORMS, vol. 63(3), pages 729-748, March.
    3. Ruyi Ge & Juan Feng & Bin Gu, 2016. "Borrower’s default and self-disclosure of social media information in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-6, December.
    4. Liang Chen & Zihong Huang & De Liu, 2016. "Pure and hybrid crowds in crowdfunding markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-18, December.
    5. Dendramis, Y. & Tzavalis, E. & Varthalitis, P. & Athanasiou, E., 2020. "Predicting default risk under asymmetric binary link functions," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1039-1056.
    6. Fan-Osuala, Onochie & Zantedeschi, Daniel & Jank, Wolfgang, 2018. "Using past contribution patterns to forecast fundraising outcomes in crowdfunding," International Journal of Forecasting, Elsevier, vol. 34(1), pages 30-44.
    7. Seth Freedman & Ginger Zhe Jin, 2008. "Do Social Networks Solve Information Problems for Peer-to-Peer Lending? Evidence from Prosper.com," Working Papers 08-43, NET Institute.
    8. Qizhi Tao & Yizhe Dong & Ziming Lin, 2017. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 19(3), pages 425-441, June.
    9. Hao Jiang & Michela Verardo, 2018. "Does Herding Behavior Reveal Skill? An Analysis of Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 73(5), pages 2229-2269, October.
    10. Jiang, Hao & Verardo, Michela, 2018. "Does herding behavior reveal skill? An analysis of mutual fund performance," LSE Research Online Documents on Economics 86372, London School of Economics and Political Science, LSE Library.
    11. Mingfeng Lin & Nagpurnanand R. Prabhala & Siva Viswanathan, 2013. "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 59(1), pages 17-35, August.
    12. Juanjuan Zhang & Peng Liu, 2012. "Rational Herding in Microloan Markets," Management Science, INFORMS, vol. 58(5), pages 892-912, May.
    13. L C Thomas & R W Oliver & D J Hand, 2005. "A survey of the issues in consumer credit modelling research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1006-1015, September.
    14. Ninghua Du & Lingfang Li & Tian Lu & Xianghua Lu, 2020. "Prosocial Compliance in P2P Lending: A Natural Field Experiment," Management Science, INFORMS, vol. 66(1), pages 315-333, January.
    15. Linck, James S. & Netter, Jeffry M. & Yang, Tina, 2008. "The determinants of board structure," Journal of Financial Economics, Elsevier, vol. 87(2), pages 308-328, February.
    16. Qizhi Tao & Yizhe Dong & Ziming Lin, 0. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
    17. Jörg Becker & Ralf Knackstedt & Jens Pöppelbuß, 2009. "Developing Maturity Models for IT Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(3), pages 213-222, June.
    18. Haomin Wang & Gang Kou & Yi Peng, 2021. "Multi-class misclassification cost matrix for credit ratings in peer-to-peer lending," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(4), pages 923-934, March.
    19. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    20. repec:dau:papers:123456789/4137 is not listed on IDEAS
    21. repec:dau:papers:123456789/2087 is not listed on IDEAS
    22. Liu, Zhengchi & Shang, Jennifer & Wu, Shin-yi & Chen, Pei-yu, 2020. "Social collateral, soft information and online peer-to-peer lending: A theoretical model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 428-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Yangqiu & Hu, Guoliu & Wan, Qing, 2024. "Environmental Protection tax and diversified transition of heavily polluting enterprises: Evidence from a quasi-natural experiment in China," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1570-1592.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleksandr Talavera & Haofeng Xu, 2018. "Role of Verification in Peer-to-Peer Lending," Working Papers 2018-25, Swansea University, School of Management.
    2. Nadia Nahar Purkayastha & Şule Erdem Tuzlukaya, 2020. "Determination Of The Benefits And Risks Of Peer-To-Peer (P2p) Lending: A Social Network Teory Approach," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 131-143.
    3. Serena Gallo, 2021. "Fintech platforms: Lax or careful borrowers’ screening?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-33, December.
    4. Pankaj Kumar Maskara & Emre Kuvvet & Gengxuan Chen, 2021. "The role of P2P platforms in enhancing financial inclusion in the United States: An analysis of peer‐to‐peer lending across the rural–urban divide," Financial Management, Financial Management Association International, vol. 50(3), pages 747-774, September.
    5. Mengyin Li & Phillip H. Phan & Xian Sun, 2021. "Business Friendliness: A Double-Edged Sword," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    6. Qun Chen & Ji-Wen Li & Jian-Guo Liu & Jing-Ti Han & Yun Shi & Xun-Hua Guo, 2021. "Borrower Learning Effects: Do Prior Experiences Promote Continuous Successes in Peer-to-Peer Lending?," Information Systems Frontiers, Springer, vol. 23(4), pages 963-986, August.
    7. Qun Chen & Ji-Wen Li & Jian-Guo Liu & Jing-Ti Han & Yun Shi & Xun-Hua Guo, 0. "Borrower Learning Effects: Do Prior Experiences Promote Continuous Successes in Peer-to-Peer Lending?," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    8. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    9. Xiaoyu Li & Jiahong Yuan & Yan Shi & Zilai Sun & Junhu Ruan, 2020. "Emerging Trends and Innovation Modes of Internet Finance—Results from Co-Word and Co-Citation Networks," Future Internet, MDPI, vol. 12(3), pages 1-14, March.
    10. Qizhi Tao & Yizhe Dong & Ziming Lin, 2017. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 19(3), pages 425-441, June.
    11. Qizhi Tao & Yizhe Dong & Ziming Lin, 0. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
    12. Huang, Jin & Sena, Vania & Li, Jun & Ozdemir, Sena, 2021. "Message framing in P2P lending relationships," Journal of Business Research, Elsevier, vol. 122(C), pages 761-773.
    13. Hongchang Wang & Eric M. Overby, 2022. "How Does Online Lending Influence Bankruptcy Filings?," Management Science, INFORMS, vol. 68(5), pages 3309-3329, May.
    14. Gao, Hongming & Zhu, Hui & Ma, Haiying, 2024. "Peer effect and funding success: Analyzing friendship networks in online credit markets," Finance Research Letters, Elsevier, vol. 66(C).
    15. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. Mustafa Caglayan & Oleksandr Talavera & Lin Xiong & Jing Zhang, 2022. "What does not kill us makes us stronger: the story of repetitive consumer loan applications," The European Journal of Finance, Taylor & Francis Journals, vol. 28(1), pages 46-65, January.
    17. Abdikerimova, Samal & Feng, Runhuan, 2022. "Peer-to-peer multi-risk insurance and mutual aid," European Journal of Operational Research, Elsevier, vol. 299(2), pages 735-749.
    18. Ninghua Du & Lingfang Li & Tian Lu & Xianghua Lu, 2020. "Prosocial Compliance in P2P Lending: A Natural Field Experiment," Management Science, INFORMS, vol. 66(1), pages 315-333, January.
    19. Foster, Joshua, 2019. "Thank you for being a friend: The roles of strong and weak social network ties in attracting backers to crowdfunded campaigns," Information Economics and Policy, Elsevier, vol. 49(C).
    20. Dongwoo Kim, 2023. "Can investors’ collective decision-making evolve? Evidence from peer-to-peer lending markets," Electronic Commerce Research, Springer, vol. 23(2), pages 1323-1358, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00261-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.