IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v195y2023ics0040162523004559.html
   My bibliography  Save this article

Is the photovoltaic power generation policy effective in China? A quantitative analysis of policy synergy based on text mining

Author

Listed:
  • Chong, Zhaotian
  • Wang, Qunwei
  • Wang, Lei

Abstract

To achieve carbon neutrality by 2060, the Chinese government needs to establish effective policies for promoting renewable energy. However, there is a lack of research on the quantitative assessment of policies and policy synergies. Focusing on the photovoltaic power generation policies in China, this study quantitatively examines the degree of synergy of the policies in terms of promulgating departments, goals, and measures. Additionally, this study expands the existing quantitative research on policy content analysis. The results show that changes in the degree of synergy between policy goals and measures tend to be consistent and that China's policies on photovoltaic power generation have gradually shifted to the combined use of different policy measures. Moreover, China relies more on traditional administrative resources and employs strong administrative power approaches, such as macro planning, regulation and supervision, and fiscal policies. Meanwhile, market-oriented approaches, such as financial measures, have not produced strong synergistic effects. Furthermore, the relative lag in policy formulation has resulted in a lack of policy continuity and systematization. Hence, the Chinese government should enhance the synergy between market-oriented and other policy measures, strengthen the structure of the policy system, promote cooperation between policy-promulgating departments, and improve the early warning mechanisms for policies.

Suggested Citation

  • Chong, Zhaotian & Wang, Qunwei & Wang, Lei, 2023. "Is the photovoltaic power generation policy effective in China? A quantitative analysis of policy synergy based on text mining," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004559
    DOI: 10.1016/j.techfore.2023.122770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523004559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xue & Rai, Varun, 2019. "Local demand-pull policy and energy innovation: Evidence from the solar photovoltaic market in China," Energy Policy, Elsevier, vol. 128(C), pages 364-376.
    2. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    3. Peters,B. Guy & Capano,Giliberto & Howlett,Michael & Mukherjee,Ishani & Chou,Meng-Hsuan & Ravinet,Pauline, 2018. "Designing for Policy Effectiveness," Cambridge Books, Cambridge University Press, number 9781108453110.
    4. May, Nils, 2017. "The impact of wind power support schemes on technology choices," Energy Economics, Elsevier, vol. 65(C), pages 343-354.
    5. Kong, Yuan & Feng, Chao & Yang, Jun, 2020. "How does China manage its energy market? A perspective of policy evolution," Energy Policy, Elsevier, vol. 147(C).
    6. Liu, Dandan & Wang, Delu, 2022. "Evaluation of the synergy degree of industrial de-capacity policies based on text mining: A case study of China's coal industry," Resources Policy, Elsevier, vol. 76(C).
    7. Mah, Daphne Ngar-yin & Cheung, Darren Man-wai & Leung, Michael K.H. & Wang, Maggie Yachao & Wong, Mandy Wai-ming & Lo, Kevin & Cheung, Altair T.F., 2021. "Policy mixes and the policy learning process of energy transitions: Insights from the feed-in tariff policy and urban community solar in Hong Kong," Energy Policy, Elsevier, vol. 157(C).
    8. Huo, Mo-lin & Zhang, Dan-wei, 2012. "Lessons from photovoltaic policies in China for future development," Energy Policy, Elsevier, vol. 51(C), pages 38-45.
    9. Dressler, Luisa, 2016. "Support schemes for renewable electricity in the European Union: Producer strategies and competition," Energy Economics, Elsevier, vol. 60(C), pages 186-196.
    10. Zhao, Xingang & Zeng, Yiping & Zhao, Di, 2015. "Distributed solar photovoltaics in China: Policies and economic performance," Energy, Elsevier, vol. 88(C), pages 572-583.
    11. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).
    12. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    13. Russo, Margherita & Pavone, Pasquale, 2021. "Evidence-based portfolios of innovation policy mixes: A cross-country analysis," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    14. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    15. Magro, Edurne & Wilson, James R., 2019. "Policy-mix evaluation: Governance challenges from new place-based innovation policies," Research Policy, Elsevier, vol. 48(10).
    16. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    17. Han, Rong & Li, Jianglong & Guo, Zhi, 2022. "Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity," Energy, Elsevier, vol. 239(PA).
    18. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
    19. Tanaka, Makoto & Chen, Yihsu, 2013. "Market power in renewable portfolio standards," Energy Economics, Elsevier, vol. 39(C), pages 187-196.
    20. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    21. Uyarra, Elvira & Shapira, Philip & Harding, Alan, 2016. "Low carbon innovation and enterprise growth in the UK: Challenges of a place-blind policy mix," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 264-272.
    22. Woo, C.K. & Moore, J. & Schneiderman, B. & Ho, T. & Olson, A. & Alagappan, L. & Chawla, K. & Toyama, N. & Zarnikau, J., 2016. "Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 299-312.
    23. Avril, S. & Mansilla, C. & Busson, M. & Lemaire, T., 2012. "Photovoltaic energy policy: Financial estimation and performance comparison of the public support in five representative countries," Energy Policy, Elsevier, vol. 51(C), pages 244-258.
    24. Dietmar Braun, 2008. "Organising the political coordination of knowledge and innovation policies," Science and Public Policy, Oxford University Press, vol. 35(4), pages 227-239, May.
    25. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    26. Paul Lehmann, 2012. "Justifying A Policy Mix For Pollution Control: A Review Of Economic Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 26(1), pages 71-97, February.
    27. Zhang, Sufang & Andrews-Speed, Philip & Ji, Meiyun, 2014. "The erratic path of the low-carbon transition in China: Evolution of solar PV policy," Energy Policy, Elsevier, vol. 67(C), pages 903-912.
    28. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
    29. Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
    30. Hagerman, Shelly & Jaramillo, Paulina & Morgan, M. Granger, 2016. "Is rooftop solar PV at socket parity without subsidies?," Energy Policy, Elsevier, vol. 89(C), pages 84-94.
    31. Hoppmann, Joern & Huenteler, Joern & Girod, Bastien, 2014. "Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power," Research Policy, Elsevier, vol. 43(8), pages 1422-1441.
    32. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.
    33. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    34. Simsek, Yeliz & Lorca, Álvaro & Urmee, Tania & Bahri, Parisa A. & Escobar, Rodrigo, 2019. "Review and assessment of energy policy developments in Chile," Energy Policy, Elsevier, vol. 127(C), pages 87-101.
    35. Yang, Fei-fei & Zhao, Xin-gang, 2018. "Policies and economic efficiency of China's distributed photovoltaic and energy storage industry," Energy, Elsevier, vol. 154(C), pages 221-230.
    36. Zhang, Huiming & Xu, Zhidong & Sun, Chuanwang & Elahi, Ehsan, 2018. "Targeted poverty alleviation using photovoltaic power: Review of Chinese policies," Energy Policy, Elsevier, vol. 120(C), pages 550-558.
    37. Zhi, Qiang & Sun, Honghang & Li, Yanxi & Xu, Yurui & Su, Jun, 2014. "China’s solar photovoltaic policy: An analysis based on policy instruments," Applied Energy, Elsevier, vol. 129(C), pages 308-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaolan & Xie, Qiuyue & Cao, Xiang & Li, Qilin, 2024. "Examining the effectiveness of China's energy poverty alleviation policies: A text analysis on inter-provincial panel data," Energy Policy, Elsevier, vol. 186(C).
    2. Hu, Xing & Yu, Shiwei & Fang, Xu & Ovaere, Marten, 2023. "Which combinations of renewable energy policies work better? Insights from policy text synergies in China," Energy Economics, Elsevier, vol. 127(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    2. Liu, Chang & Liu, Linlin & Zhang, Dayong & Fu, Jiasha, 2021. "How does the capital market respond to policy shocks? Evidence from listed solar photovoltaic companies in China," Energy Policy, Elsevier, vol. 151(C).
    3. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    4. Ruyin Long & Wenhua Cui & Qianwen Li, 2017. "The Evolution and Effect Evaluation of Photovoltaic Industry Policy in China," Sustainability, MDPI, vol. 9(12), pages 1-40, November.
    5. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    6. Han, Mengyao & Xiong, Jiao & Wang, Siyuan & Yang, Yu, 2020. "Chinese photovoltaic poverty alleviation: Geographic distribution, economic benefits and emission mitigation," Energy Policy, Elsevier, vol. 144(C).
    7. Wang, Hongwei & Zheng, Shilin & Zhang, Yanhua & Zhang, Kai, 2016. "Analysis of the policy effects of downstream Feed-In Tariff on China’s solar photovoltaic industry," Energy Policy, Elsevier, vol. 95(C), pages 479-488.
    8. Mohammad Esmailzadeh & Siamak Noori & Alireza Aliahmadi & Hamidreza Nouralizadeh & Marcel Bogers, 2020. "A Functional Analysis of Technological Innovation Systems in Developing Countries: An Evaluation of Iran’s Photovoltaic Innovation System," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    9. Corwin, Samuel & Johnson, Timothy L., 2019. "The role of local governments in the development of China's solar photovoltaic industry," Energy Policy, Elsevier, vol. 130(C), pages 283-293.
    10. Yujie Lu & Fangxin Yi & Shaocong Yu & Yangtian Feng & Yujuan Wang, 2022. "Pathways to Sustainable Deployment of Solar Photovoltaic Policies in 20 Leading Countries Using a Qualitative Comparative Analysis," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    11. Jiang, Zihao & Shi, Jiarong, 2023. "Government intervention and technological innovation in the wind power industry in China: The role of industrial environmental turbulence," Applied Energy, Elsevier, vol. 344(C).
    12. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    13. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    14. Binz, Christian & Gosens, Jorrit & Hansen, Teis & Hansen, Ulrich Elmer, 2017. "Toward Technology-Sensitive Catching-Up Policies: Insights from Renewable Energy in China," World Development, Elsevier, vol. 96(C), pages 418-437.
    15. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
    16. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    17. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    18. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    19. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    20. Ding, H. & Zhou, D.Q. & Liu, G.Q. & Zhou, P., 2020. "Cost reduction or electricity penetration: Government R&D-induced PV development and future policy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.