IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v62y2016i3p880-898.html
   My bibliography  Save this article

Electricity Trading and Negative Prices: Storage vs. Disposal

Author

Listed:
  • Yangfang (Helen) Zhou

    (Lee Kong Chian School of Business, Singapore Management University, Singapore 188065)

  • Alan Scheller-Wolf

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Nicola Secomandi

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Stephen Smith

    (Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

Electricity cannot yet be stored on a large scale, but technological advances leading to cheaper and more efficient industrial batteries make grid-level storage of electricity surpluses a natural choice. Because electricity prices can be negative, it is unclear how the presence of negative prices might affect the storage policy structure known to be optimal when prices are only nonnegative, or even how important it is to consider negative prices when managing an industrial battery. For fast storage (a storage facility that can both be fully emptied and filled up in one decision period), we show analytically that negative prices can substantially alter the optimal storage policy structure, e.g., all else being equal, it can be optimal to empty an almost empty storage facility and fill up an almost full one. For more typical slow grid-level electricity storage, we numerically establish that ignoring negative prices could result in a considerable loss of value when negative prices occur more than 5% of the time. Negative prices raise another possibility: rather than storing surpluses, a merchant might buy negatively priced electricity surpluses and dispose of them, e.g., using load banks. We find that the value of such a disposal strategy is substantial, e.g., about $118 per kilowatt-year when negative prices occur 10% of the time, but smaller than that of the storage strategy, e.g., about $391 per kilowatt-year using a typical battery. However, devices for disposal are much cheaper than those for storage. Our results thus have ramifications for merchants as well as policy makers. This paper was accepted by Serguei Netessine, operations management .

Suggested Citation

  • Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
  • Handle: RePEc:inm:ormnsc:v:62:y:2016:i:3:p:880-898
    DOI: 10.1287/mnsc.2015.2161
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2015.2161
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2015.2161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matt Thompson & Matt Davison & Henning Rasmussen, 2009. "Natural gas storage valuation and optimization: A real options application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 226-238, April.
    2. Owen Q. Wu & Derek D. Wang & Zhenwei Qin, 2012. "Seasonal Energy Storage Operations with Limited Flexibility: The Price-Adjusted Rolling Intrinsic Policy," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 455-471, July.
    3. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    4. Stuart E. Dreyfus, 1957. "An Analytic Solution of the Warehouse Problem," Management Science, INFORMS, vol. 4(1), pages 99-104, October.
    5. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    6. Williams,Jeffrey C. & Wright,Brian D., 2005. "Storage and Commodity Markets," Cambridge Books, Cambridge University Press, number 9780521023399, November.
    7. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    8. Nicolosi, S., 2010. "Wind power integration, negative prices and power system flexibility - An empirical analysis of extreme events in Germany," MPRA Paper 31834, University Library of Munich, Germany.
    9. Graves, Frank & Jenkin, Thomas & Murphy, Dean, 1999. "Opportunities for Electricity Storage in Deregulating Markets," The Electricity Journal, Elsevier, vol. 12(8), pages 46-56, October.
    10. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    11. Nicolosi, Marco, 2010. "Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime," Energy Policy, Elsevier, vol. 38(11), pages 7257-7268, November.
    12. Brandstätt, Christine & Brunekreeft, Gert & Jahnke, Katy, 2011. "How to deal with negative power price spikes?--Flexible voluntary curtailment agreements for large-scale integration of wind," Energy Policy, Elsevier, vol. 39(6), pages 3732-3740, June.
    13. Sripad K. Devalkar & Ravi Anupindi & Amitabh Sinha, 2011. "Integrated Optimization of Procurement, Processing, and Trade of Commodities," Operations Research, INFORMS, vol. 59(6), pages 1369-1381, December.
    14. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    15. Nicola Secomandi, 2010. "Optimal Commodity Trading with a Capacitated Storage Asset," Management Science, INFORMS, vol. 56(3), pages 449-467, March.
    16. CHARNES, Abraham & DREZE, Jacques H. & MILLER, Merton, 1966. "Decision and horizon rules for stochastic planning problems: A linear example," LIDAM Reprints CORE 4, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Sioshansi, Ramteen, 2014. "When energy storage reduces social welfare," Energy Economics, Elsevier, vol. 41(C), pages 106-116.
    18. James E. Smith & Kevin F. McCardle, 1999. "Options in the Real World: Lessons Learned in Evaluating Oil and Gas Investments," Operations Research, INFORMS, vol. 47(1), pages 1-15, February.
    19. Helyette Geman, 2005. "Commodities and Commodity Derivatives. Modeling and Pricing for Agriculturals, Metals and Energy," Post-Print halshs-00144182, HAL.
    20. Owen Q. Wu & Roman Kapuscinski, 2013. "Curtailing Intermittent Generation in Electrical Systems," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 578-595, October.
    21. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    22. repec:dau:papers:123456789/607 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangfang (Helen) Zhou & Alan Scheller‐Wolf & Nicola Secomandi & Stephen Smith, 2019. "Managing Wind‐Based Electricity Generation in the Presence of Storage and Transmission Capacity," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 970-989, April.
    2. Nicola Secomandi, 2015. "Merchant Commodity Storage Practice Revisited," Operations Research, INFORMS, vol. 63(5), pages 1131-1143, October.
    3. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    4. Nicola Secomandi & Guoming Lai & François Margot & Alan Scheller-Wolf & Duane J. Seppi, 2015. "Merchant Commodity Storage and Term-Structure Model Error," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 302-320, July.
    5. Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
    6. Selvaprabu Nadarajah & François Margot & Nicola Secomandi, 2015. "Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage," Management Science, INFORMS, vol. 61(12), pages 3054-3076, December.
    7. Christian Mandl & Selvaprabu Nadarajah & Stefan Minner & Srinagesh Gavirneni, 2022. "Data‐driven storage operations: Cross‐commodity backtest and structured policies," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2438-2456, June.
    8. Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.
    9. Jiao Wang & Lima Zhao & Arnd Huchzermeier, 2021. "Operations‐Finance Interface in Risk Management: Research Evolution and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 355-389, February.
    10. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    11. Guoming Lai & Mulan X. Wang & Sunder Kekre & Alan Scheller-Wolf & Nicola Secomandi, 2011. "Valuation of Storage at a Liquefied Natural Gas Terminal," Operations Research, INFORMS, vol. 59(3), pages 602-616, June.
    12. Daniel R. Jiang & Warren B. Powell, 2015. "Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 525-543, August.
    13. Henriot, Arthur, 2015. "Economic curtailment of intermittent renewable energy sources," Energy Economics, Elsevier, vol. 49(C), pages 370-379.
    14. Nicola Secomandi & Mulan X. Wang, 2012. "A Computational Approach to the Real Option Management of Network Contracts for Natural Gas Pipeline Transport Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 441-454, July.
    15. Cruise, James R. & Flatley, Lisa & Zachary, Stan, 2018. "Impact of storage competition on energy markets," European Journal of Operational Research, Elsevier, vol. 269(3), pages 998-1012.
    16. Sripad K. Devalkar & Ravi Anupindi & Amitabh Sinha, 2011. "Integrated Optimization of Procurement, Processing, and Trade of Commodities," Operations Research, INFORMS, vol. 59(6), pages 1369-1381, December.
    17. Alessio Trivella & Selvaprabu Nadarajah & Stein-Erik Fleten & Denis Mazieres & David Pisinger, 2021. "Managing Shutdown Decisions in Merchant Commodity and Energy Production: A Social Commerce Perspective," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 311-330, March.
    18. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    19. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    20. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:62:y:2016:i:3:p:880-898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.