IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v3y2009i3p191-209.html
   My bibliography  Save this article

Towards an explanatory and computational theory of scientific discovery

Author

Listed:
  • Chen, Chaomei
  • Chen, Yue
  • Horowitz, Mark
  • Hou, Haiyan
  • Liu, Zeyuan
  • Pellegrino, Donald

Abstract

We propose an explanatory and computational theory of transformative discoveries in science. The theory is derived from a recurring theme found in a diverse range of scientific change, scientific discovery, and knowledge diffusion theories in philosophy of science, sociology of science, social network analysis, and information science. The theory extends the concept of structural holes from social networks to a broader range of associative networks found in science studies, especially including networks that reflect underlying intellectual structures such as co-citation networks and collaboration networks. The central premise is that connecting otherwise disparate patches of knowledge is a valuable mechanism of creative thinking in general and transformative scientific discovery in particular. In addition, the premise consistently explains the value of connecting people from different disciplinary specialties. The theory not only explains the nature of transformative discoveries in terms of the brokerage mechanism but also characterizes the subsequent diffusion process as optimal information foraging in a problem space. Complementary to epidemiological models of diffusion, foraging-based conceptualizations offer a unified framework for arriving at insightful discoveries and optimizing subsequent pathways of search in a problem space. Structural and temporal properties of potentially high-impact scientific discoveries are derived from the theory to characterize the emergence and evolution of intellectual networks of a field. Two Nobel Prize winning discoveries, the discovery of Helicobacter pylori and gene targeting techniques, and a discovery in string theory demonstrated such properties. Connections to and differences from existing approaches are discussed. The primary value of the theory is that it provides not only a computational model of intellectual growth, but also concrete and constructive explanations of where one may find insightful inspirations for transformative scientific discoveries.

Suggested Citation

  • Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
  • Handle: RePEc:eee:infome:v:3:y:2009:i:3:p:191-209
    DOI: 10.1016/j.joi.2009.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157709000236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2009.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Heinze & Philip Shapira & Jacqueline Senker & Stefan Kuhlmann, 2007. "Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 125-152, January.
    2. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    3. Naoki Shibata & Yuya Kajikawa & Katsumori Matsushima, 2007. "Topological analysis of citation networks to discover the future core articles," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(6), pages 872-882, April.
    4. Thomas Heinze & Gerrit Bauer, 2007. "Characterizing creative scientists in nano-S&T: Productivity, multidisciplinarity, and network brokerage in a longitudinal perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 811-830, March.
    5. R. Wagner-Döbler, 1999. "William Goffman's “Mathematical approach to the prediction of scientific discovery” and its application to logic, revisited," Scientometrics, Springer;Akadémiai Kiadó, vol. 46(3), pages 635-645, November.
    6. M. Ausloos & R. Lambiotte, 2007. "Drastic events make evolving networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(1), pages 89-94, May.
    7. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    8. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    9. John Antonakis & Rafael Lalive, 2008. "Quantifying Scholarly Impact: IQp Versus the Hirsch h," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(6), pages 956-969, April.
    10. Chaomei Chen & Jasna Kuljis, 2003. "The rising landscape: A visual exploration of superstring revolutions in physics," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 435-446, March.
    11. Bettencourt, Luís M.A. & Kaiser, David I. & Kaur, Jasleen, 2009. "Scientific discovery and topological transitions in collaboration networks," Journal of Informetrics, Elsevier, vol. 3(3), pages 210-221.
    12. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    13. Michael D. Gordon & Robert K. Lindsay, 1996. "Toward discovery support systems: A replication, re‐examination, and extension of Swanson's work on literature‐based discovery of a connection between Raynaud's and fish oil," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 47(2), pages 116-128, February.
    14. Don R. Swanson, 1987. "Two medical literatures that are logically but not bibliographically connected," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 38(4), pages 228-233, July.
    15. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Díez-Martín & Alicia Blanco-González & Camilo Prado-Román, 2021. "The intellectual structure of organizational legitimacy research: a co-citation analysis in business journals," Review of Managerial Science, Springer, vol. 15(4), pages 1007-1043, May.
    2. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    3. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    4. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    5. Liu, Xiang & Jiang, Tingting & Ma, Feicheng, 2013. "Collective dynamics in knowledge networks: Emerging trends analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 425-438.
    6. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    7. Roberto Lalli & Riaz Howey & Dirk Wintergrün, 2020. "The dynamics of collaboration networks and the history of general relativity, 1925–1970," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1129-1170, February.
    8. Hanning Guo & Scott Weingart & Katy Börner, 2011. "Mixed-indicators model for identifying emerging research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 421-435, October.
    9. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    10. Yoshiyuki Takeda & Yuya Kajikawa, 2010. "Tracking modularity in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 783-792, June.
    11. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    12. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    13. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    14. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    15. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    16. Mark Kibanov & Raphael H. Heiberger & Simone Rödder & Martin Atzmueller & Gerd Stumme, 2019. "Social studies of scholarly life with sensor-based ethnographic observations," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1387-1428, June.
    17. Persson, Olle, 2010. "Identifying research themes with weighted direct citation links," Journal of Informetrics, Elsevier, vol. 4(3), pages 415-422.
    18. Carlos B. Amat & François Perruchas, 2016. "Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 41-56, July.
    19. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    20. Bettencourt, Luís M.A. & Kaiser, David I. & Kaur, Jasleen, 2009. "Scientific discovery and topological transitions in collaboration networks," Journal of Informetrics, Elsevier, vol. 3(3), pages 210-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:3:y:2009:i:3:p:191-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.