IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i3p619-628.html
   My bibliography  Save this article

Hypothesis testing for an extended cox model with time-varying coefficients

Author

Listed:
  • Takumi Saegusa
  • Chongzhi Di
  • Ying Qing Chen

Abstract

No abstract is available for this item.

Suggested Citation

  • Takumi Saegusa & Chongzhi Di & Ying Qing Chen, 2014. "Hypothesis testing for an extended cox model with time-varying coefficients," Biometrics, The International Biometric Society, vol. 70(3), pages 619-628, September.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:3:p:619-628
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12185
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    2. Jiang Lin & Daowen Zhang & Marie Davidian, 2006. "Smoothing Spline-Based Score Tests for Proportional Hazards Models," Biometrics, The International Biometric Society, vol. 62(3), pages 803-812, September.
    3. Lang Wu & Peter B. Gilbert, 2002. "Flexible Weighted Log-Rank Tests Optimal for Detecting Early and/or Late Survival Differences," Biometrics, The International Biometric Society, vol. 58(4), pages 997-1004, December.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    5. Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    2. Sonja Greven & Ciprian Crainiceanu, 2013. "On likelihood ratio testing for penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 387-402, October.
    3. Huaihou Chen & Philip T. Reiss & Thaddeus Tarpey, 2014. "Optimally weighted L-super-2 distance for functional data," Biometrics, The International Biometric Society, vol. 70(3), pages 516-525, September.
    4. Oliver E. Lee & Thomas M. Braun, 2012. "Permutation Tests for Random Effects in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 68(2), pages 486-493, June.
    5. Vanesa Jordá & José Sarabia, 2015. "International Convergence in Well-Being Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 120(1), pages 1-27, January.
    6. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    7. repec:wyi:journl:002195 is not listed on IDEAS
    8. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    9. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    10. Philip T. Reiss & R. Todd Ogden, 2010. "Functional Generalized Linear Models with Images as Predictors," Biometrics, The International Biometric Society, vol. 66(1), pages 61-69, March.
    11. Matteo Bottai & Nicola Salvati & Nicola Orsini, 2006. "Multilevel models for analyzing people’s daily movement behavior," Journal of Geographical Systems, Springer, vol. 8(1), pages 97-108, March.
    12. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    13. Philip T. Reiss & Lei Huang & Pei‐Shien Wu & Huaihou Chen & Stan Colcombe, 2017. "Pointwise influence matrices for functional‐response regression," Biometrics, The International Biometric Society, vol. 73(4), pages 1092-1101, December.
    14. repec:hum:wpaper:sfb649dp2013-033 is not listed on IDEAS
    15. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    16. Yuanjia Wang & Huaihou Chen, 2012. "On Testing an Unspecified Function Through a Linear Mixed Effects Model with Multiple Variance Components," Biometrics, The International Biometric Society, vol. 68(4), pages 1113-1125, December.
    17. Sonja Greven & Fabian Scheipl, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1568-1573, October.
    18. Philip T. Reiss & R. Todd Ogden, 2009. "Smoothing parameter selection for a class of semiparametric linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 505-523, April.
    19. Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    20. Padoan, S.A. & Wand, M.P., 2008. "Mixed model-based additive models for sample extremes," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2850-2858, December.
    21. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    22. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:3:p:619-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.