IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v91y2014icp145-152.html
   My bibliography  Save this article

The large-maturity smile for the Stein–Stein model

Author

Listed:
  • Forde, Martin

Abstract

We compute the large-maturity smile for the correlated Stein–Stein stochastic volatility model dSt=StYtdWt1,dYt=κ(θ−Yt)dt+σdWt2, dWt1dWt2=ρdt, using the known closed-form solution for the characteristic function of the log stock price given in Schöbel and Zhu (1999). The Stein–Stein model is not covered by the results in Forde and Kumar (submitted for publication) and Jacquier et al. (2013) because the volatility fails to satisfy the sublinear growth condition in Forde and Kumar (submitted for publication) and is not an affine model.11We thank Rohini Kumar for insightful comments.

Suggested Citation

  • Forde, Martin, 2014. "The large-maturity smile for the Stein–Stein model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 145-152.
  • Handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:145-152
    DOI: 10.1016/j.spl.2014.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214001400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Antoine Jacquier & Aleksandar Mijatović, 2014. "Large Deviations for the Extended Heston Model: The Large-Time Case," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(3), pages 263-280, September.
    3. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
    4. Martin Forde & Andrey Pogudin, 2013. "The Large-Maturity Smile For The Sabr And Cev-Heston Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-20.
    5. Martin Forde & Antoine Jacquier & Aleksandar Mijatovic, 2009. "Asymptotic formulae for implied volatility in the Heston model," Papers 0911.2992, arXiv.org, revised May 2010.
    6. Forde, Martin, 2011. "Large-time asymptotics for an uncorrelated stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1230-1232, August.
    7. Jim Gatheral & Antoine Jacquier, 2011. "Convergence of Heston to SVI," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1129-1132.
    8. Antoine Jacquier & Martin Keller-Ressel & Aleksandar Mijatovic, 2011. "Large deviations and stochastic volatility with jumps: asymptotic implied volatility for affine models," Papers 1108.3998, arXiv.org.
    9. L. Rogers & M. Tehranchi, 2010. "Can the implied volatility surface move by parallel shifts?," Finance and Stochastics, Springer, vol. 14(2), pages 235-248, April.
    10. Martin Forde, 2011. "Exact Pricing And Large-Time Asymptotics For The Modified Sabr Model And The Brownian Exponential Functional," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 559-578.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    2. Antoine Jacquier & Aleksandar Mijatović, 2014. "Large Deviations for the Extended Heston Model: The Large-Time Case," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(3), pages 263-280, September.
    3. Zhi Jun Guo & Eckhard Platen, 2012. "The Small And Large Time Implied Volatilities In The Minimal Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-23.
    4. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    5. Archil Gulisashvili & Josef Teichmann, 2014. "The G\"{a}rtner-Ellis theorem, homogenization, and affine processes," Papers 1406.3716, arXiv.org.
    6. Martin Forde & Stefan Gerhold & Benjamin Smith, 2021. "Small‐time, large‐time, and H→0 asymptotics for the Rough Heston model," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 203-241, January.
    7. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    8. Antoine Jacquier & Fangwei Shi, 2016. "The randomised Heston model," Papers 1608.07158, arXiv.org, revised Dec 2018.
    9. Romain Bompis & Emmanuel Gobet, 2012. "Asymptotic and non asymptotic approximations for option valuation," Post-Print hal-00720650, HAL.
    10. Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
    11. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    12. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    13. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    14. Stephen Taylor & Scott Glasgow & James Taylor & Jan Vecer, 2016. "Explicit Density Approximations for Local Volatility Models Using Heat Kernel Expansions," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 847-867, September.
    15. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
    16. Shuzhen Yang & Wenqing Zhang, 2023. "Fixed-point iterative algorithm for SVI model," Papers 2301.07830, arXiv.org.
    17. Nian Yao & Zhiqiu Li & Zhichao Ling & Junfeng Lin, 2020. "Asymptotic Smiles for an Affine Jump-Diffusion Model," Papers 2003.00334, arXiv.org, revised May 2020.
    18. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    19. Florence Guillaume & Wim Schoutens, 2014. "Heston Model: The Variance Swap Calibration," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 76-89, April.
    20. J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2011. "Marginal density expansions for diffusions and stochastic volatility, part I: Theoretical Foundations," Papers 1111.2462, arXiv.org, revised May 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:145-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.