IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v18y2016i3d10.1007_s11009-015-9463-6.html
   My bibliography  Save this article

Explicit Density Approximations for Local Volatility Models Using Heat Kernel Expansions

Author

Listed:
  • Stephen Taylor

    (Hutchin Hill Capital)

  • Scott Glasgow

    (BYU Department of Mathematics)

  • James Taylor

    (BYU Department of Mathematics)

  • Jan Vecer

    (Vysoka skola aplikovanecho prava
    Charles University)

Abstract

Heat kernel perturbation theory is a tool for constructing explicit approximation formulas for the solutions of linear parabolic equations. We review the crux of this perturbative formalism and then apply it to differential equations which govern the transition densities of several local volatility processes. In particular, we compute all the heat kernel coefficients for the CEV and quadratic local volatility models; in the later case, we are able to use these to construct an exact explicit formula for the processes’ transition density. We then derive low order approximation formulas for the cubic local volatility model, an affine-affine short rate model, and a generalized mean reverting CEV model. We finally demonstrate that the approximation formulas are accurate in certain model parameter regimes via comparison to Monte Carlo simulations.

Suggested Citation

  • Stephen Taylor & Scott Glasgow & James Taylor & Jan Vecer, 2016. "Explicit Density Approximations for Local Volatility Models Using Heat Kernel Expansions," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 847-867, September.
  • Handle: RePEc:spr:metcap:v:18:y:2016:i:3:d:10.1007_s11009-015-9463-6
    DOI: 10.1007/s11009-015-9463-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-015-9463-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-015-9463-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Martin Forde & Andrey Pogudin, 2013. "The Large-Maturity Smile For The Sabr And Cev-Heston Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-20.
    3. Leif Andersen, 2011. "Option pricing with quadratic volatility: a revisit," Finance and Stochastics, Springer, vol. 15(2), pages 191-219, June.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Martin Forde, 2011. "Exact Pricing And Large-Time Asymptotics For The Modified Sabr Model And The Brownian Exponential Functional," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 559-578.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    2. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    3. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    4. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    5. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    6. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    7. Vorst, A. C. F., 1988. "Option Pricing And Stochastic Processes," Econometric Institute Archives 272366, Erasmus University Rotterdam.
    8. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    9. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    10. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    11. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    12. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    13. Zhijian (James) Huang & Yuchen Luo, 2016. "Revisiting Structural Modeling of Credit Risk—Evidence from the Credit Default Swap (CDS) Market," JRFM, MDPI, vol. 9(2), pages 1-20, May.
    14. José Martins & Rui Cunha Marques & Carlos Oliveira Cruz & Álvaro Fonseca, 2017. "Flexibility in planning and development of a container terminal: an application of an American-style call option," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(7), pages 828-840, October.
    15. Marcelo F. Perillo, 2021. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo sin Riesgo de Crédito," CEMA Working Papers: Serie Documentos de Trabajo. 784, Universidad del CEMA.
    16. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Jochen Bigus, 2002. "Investitionsanreize, Koalitionsverhalten und Gläubigerkonflikte," Schmalenbach Journal of Business Research, Springer, vol. 54(4), pages 317-342, June.
    18. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    19. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    20. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:18:y:2016:i:3:d:10.1007_s11009-015-9463-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.