IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i8p1230-1232.html
   My bibliography  Save this article

Large-time asymptotics for an uncorrelated stochastic volatility model

Author

Listed:
  • Forde, Martin

Abstract

We derive a large-time large deviation principle for the log stock price under an uncorrelated stochastic volatility model. For this we use a Donsker-Varadhan-type large deviation principle for the occupation measure of the Ornstein-Uhlenbeck process, combined with a simple application of the contraction principle and exponential tightness.

Suggested Citation

  • Forde, Martin, 2011. "Large-time asymptotics for an uncorrelated stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1230-1232, August.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1230-1232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001040
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Forde, Martin, 2014. "The large-maturity smile for the Stein–Stein model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 145-152.
    2. Zhi Jun Guo & Eckhard Platen, 2012. "The Small And Large Time Implied Volatilities In The Minimal Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-23.
    3. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    4. Martin Forde & Stefan Gerhold & Benjamin Smith, 2019. "Small-time, large-time and $H\to 0$ asymptotics for the Rough Heston model," Papers 1906.09034, arXiv.org, revised Oct 2020.
    5. Martin Forde & Stefan Gerhold & Benjamin Smith, 2021. "Small‐time, large‐time, and H→0 asymptotics for the Rough Heston model," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 203-241, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1230-1232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.