IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v87y2014icp76-85.html
   My bibliography  Save this article

The dual multivariate Charlier and Edgeworth expansions

Author

Listed:
  • Withers, Christopher S.
  • Nadarajah, Saralees

Abstract

The Charlier differential series for distribution and density functions is the foundation for the Edgeworth expansions of distribution and density functions of sample estimators. Here, we give two forms of these expansions for multivariate distributions using multivariate Bell polynomials. Two forms arise because the multivariate Hermite polynomials have a dual form. These dual forms for the multivariate Charlier and Edgeworth expansions appear to be new.

Suggested Citation

  • Withers, Christopher S. & Nadarajah, Saralees, 2014. "The dual multivariate Charlier and Edgeworth expansions," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 76-85.
  • Handle: RePEc:eee:stapro:v:87:y:2014:i:c:p:76-85
    DOI: 10.1016/j.spl.2014.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214000145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Withers & Saralees Nadarajah, 2011. "The distribution of the maximum of a first order autoregressive process: the continuous case," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 247-266, September.
    2. Esther B. Del Brio & Trino-Manuel Niguez & Javier Perote, 2009. "Gram-Charlier densities: a multivariate approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 855-868.
    3. Javier Perote, 2004. "The multivariate Edgeworth-Sargan density," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(1), pages 77-96, April.
    4. Withers, C. S., 2000. "A simple expression for the multivariate Hermite polynomials," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 165-169, April.
    5. Tõnu Kollo & Dietrich Von Rosen, 1998. "A Unified Approach to the Approximation of Multivariate Densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 93-109, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    2. Christopher S. Withers & Saralees Nadarajah, 2016. "Expansions for Log Densities of Multivariate Estimates," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 911-920, September.
    3. C. S. Withers, 2024. "5th-Order Multivariate Edgeworth Expansions for Parametric Estimates," Mathematics, MDPI, vol. 12(6), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredo Trespalacios & Lina M. Cortés & Javier Perote, 2021. "Modeling Electricity Price and Quantity Uncertainty: An Application for Hedging with Forward Contracts," Energies, MDPI, vol. 14(11), pages 1-26, June.
    2. Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2017. "Multivariate approximations to portfolio return distribution," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 347-361, September.
    3. Inés Jiménez & Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2020. "Portfolio Risk Assessment under Dynamic (Equi)Correlation and Semi-Nonparametric Estimation: An Application to Cryptocurrencies," Mathematics, MDPI, vol. 8(12), pages 1-24, November.
    4. Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, University of Reading.
    5. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
    6. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364, April.
    7. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2017. "The kidnapping of Europe: High-order moments' transmission between developed and emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 96-115.
    8. Alexandros Gabrielsen & Axel Kirchner & Zhuoshi Liu & Paolo Zagaglia, 2015. "Forecasting Value-At-Risk With Time-Varying Variance, Skewness And Kurtosis In An Exponential Weighted Moving Average Framework," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-29.
    9. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    10. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2017. "Measuring firm size distribution with semi-nonparametric densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 35-47.
    11. Arismendi, Juan & Genaro, Alan De, 2016. "A Monte Carlo multi-asset option pricing approximation for general stochastic processes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 75-99.
    12. Trino-Manuel Niguez & Javier Perote, 2004. "Forecasting the density of asset returns," STICERD - Econometrics Paper Series 479, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Withers, C.S. & McGavin, P.N., 2006. "Expressions for the normal distribution and repeated normal integrals," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 479-487, March.
    14. Withers, Christopher S. & Nadarajah, Saralees, 2009. "Accurate tests and intervals based on linear cusum statistics," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 689-697, March.
    15. Withers, Christopher S. & Nadarajah, Saralees, 2013. "The distribution of the amplitude and phase of the mean of a sample of complex random variables," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 128-152.
    16. Fang Liang & Lingshan Du & Zhuo Huang, 2023. "Option pricing with overnight and intraday volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1576-1614, November.
    17. Lina M Cortés & Juan F. Rendón & Javier Perote, 2021. "Determining the banking solvency risk in times of COVID-19 through Gram-Charlier expansions," Documentos de Trabajo de Valor Público 19593, Universidad EAFIT.
    18. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2023. "Multivariate dynamics between emerging markets and digital asset markets: An application of the SNP-DCC model," Emerging Markets Review, Elsevier, vol. 56(C).
    19. Gnameho Kossi & Stadje Mitja & Pelsser Antoon, 2024. "A gradient method for high-dimensional BSDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 30(2), pages 183-203.
    20. Choi, Seungmoon, 2013. "Closed-form likelihood expansions for multivariate time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 174(2), pages 45-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:87:y:2014:i:c:p:76-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.