IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2014-03.html
   My bibliography  Save this paper

A Multi-Asset Option Approximation for General Stochastic Processes

Author

Listed:
  • Juan Arismendi

    (ICMA Centre, Henley Business School, University of Reading)

Abstract

We derived a model-free analytical approximation of the price of a multi-asset option defined over an arbitrary multivariate process, applying a semi-parametric expansion of the unknown risk-neutral density with the moments. The analytical expansion termed as the Multivariate Generalised Edgeworth Expansion (MGEE) is an infinite series over the derivatives of the known continuous time density. The expected value of the density expansion is calculated to approximate the option price. The expansion could be used to enhance a Monte Carlo pricing methodology incorporating the information about moments of the risk-neutral distribution. The numerical efficiency of the approximation is tested over a jump diffusion density. For the known density, we tested the multivariate lognormal (MVLN), even though arbitrary densities could be used, and we provided its derivatives until the fourth-order. The MGEE relates two densities and isolates the effects of multivariate moments over the opt ion prices. Results show that a calibrated approximation provides a good fit when the difference between the moments of the risk-neutral density and the auxiliary density are small relative to the density function of the former, and the uncalibrated approximation has immediate implications over risk management and hedging theory. The possibility to select the auxiliary density provides an advantage over classical Gram-Charlier A, B and C series approximations. The density approximation and the methodology can be applied to other fields of finance like asset pricing, econometrics, and areas of statistical nature

Suggested Citation

  • Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, University of Reading.
  • Handle: RePEc:rdg:icmadp:icma-dp2014-03
    as

    Download full text from publisher

    File URL: http://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2433612_code1612482.pdf?abstractid=2428216&mirid=1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhandari, Rishabh & Das, Sanjiv R., 2009. "Options on portfolios with higher-order moments," Finance Research Letters, Elsevier, vol. 6(3), pages 122-129, September.
    2. Dimitris Flamouris & Daniel Giamouridis, 2002. "Estimating Implied PDFs From American Options on Futures: A New Semiparametric Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(1), pages 1-30, January.
    3. Charles J. Corrado & Tie Su, 1996. "S&P 500 index option tests of Jarrow and Rudd's approximate option valuation formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(6), pages 611-629, September.
    4. Wim Schoutens, 2005. "Moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 525-530.
    5. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    6. repec:bla:jfinan:v:59:y:2004:i:6:p:2809-2834 is not listed on IDEAS
    7. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    8. repec:bla:jfinan:v:43:y:1988:i:5:p:1235-56 is not listed on IDEAS
    9. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    10. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Li, Minqiang, 2008. "Closed-Form Approximations for Spread Option Prices and Greeks," MPRA Paper 6994, University Library of Munich, Germany.
    13. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    14. Geske, Robert, 1979. "The valuation of compound options," Journal of Financial Economics, Elsevier, vol. 7(1), pages 63-81, March.
    15. Aanand Venkatramanan & Carol Alexander, 2011. "Closed Form Approximations for Spread Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(5), pages 447-472, January.
    16. Huimin Zhao & Jin E. Zhang & Eric C. Chang, 2013. "The Relation between Physical and Risk-neutral Cumulants," International Review of Finance, International Review of Finance Ltd., vol. 13(3), pages 345-381, September.
    17. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    18. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    19. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    20. Minqiang Li & Jieyun Zhou & Shi-Jie Deng, 2010. "Multi-asset spread option pricing and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 305-324.
    21. Javier Perote, 2004. "The multivariate Edgeworth-Sargan density," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(1), pages 77-96, April.
    22. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    23. Esther B. Del Brio & Trino-Manuel Niguez & Javier Perote, 2009. "Gram-Charlier densities: a multivariate approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 855-868.
    24. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    25. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    26. Kraus, Alan & Litzenberger, Robert H, 1976. "Skewness Preference and the Valuation of Risk Assets," Journal of Finance, American Finance Association, vol. 31(4), pages 1085-1100, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. C. Arismendi & Marcel Prokopczuk, 2016. "A moment-based analytic approximation of the risk-neutral density of American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 409-444, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arismendi, Juan & Genaro, Alan De, 2016. "A Monte Carlo multi-asset option pricing approximation for general stochastic processes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 75-99.
    2. J. C. Arismendi & Marcel Prokopczuk, 2016. "A moment-based analytic approximation of the risk-neutral density of American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 409-444, November.
    3. Kwangil Bae, 2019. "Valuation and applications of compound basket options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 704-720, June.
    4. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    7. Chun-Sing Lau & Chi-Fai Lo, 2014. "The pricing of basket-spread options," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1971-1982, November.
    8. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    9. Tommaso Paletta & Arturo Leccadito & Radu Tunaru, 2013. "Pricing and Hedging Basket Options with Exact Moment Matching," Papers 1312.4443, arXiv.org.
    10. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    13. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    14. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    15. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    16. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    17. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    18. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    19. Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    20. Capelle-Blancard, G. & Jurczenko, E., 1999. "Une application de la formule de Jarrow et Rudd aux options sur indice CAC 40," Papiers d'Economie Mathématique et Applications 2000.05, Université Panthéon-Sorbonne (Paris 1).

    More about this item

    Keywords

    Multi-asset option pricing; Derivatives; Risk Management;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2014-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.