IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v23y2017i3d10.1007_s10588-016-9231-3.html
   My bibliography  Save this article

Multivariate approximations to portfolio return distribution

Author

Listed:
  • Andrés Mora-Valencia

    (Universidad de los Andes)

  • Trino-Manuel Ñíguez

    (University of Westminster
    Research Division, Bank of Spain)

  • Javier Perote

    (University of Salamanca (IME))

Abstract

This article proposes a three-step procedure to estimate portfolio return distributions under the multivariate Gram–Charlier (MGC) distribution. The method combines quasi maximum likelihood (QML) estimation for conditional means and variances and the method of moments (MM) estimation for the rest of the density parameters, including the correlation coefficients. The procedure involves consistent estimates even under density misspecification and solves the so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the use of a MGC distribution represents a flexible and general approximation to the true distribution of portfolio returns and accounts for all its empirical regularities. An application of such procedure is performed for a portfolio composed of three European indices as an illustration. The MM estimation of the MGC (MGC-MM) is compared with the traditional maximum likelihood of both the MGC and multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk (VaR) performance for an equally weighted portfolio at 1 and 5 % confidence indicates that the MGC-MM method provides reasonable approximations to the true empirical VaR. Therefore, the procedure seems to be a useful tool for risk managers and practitioners.

Suggested Citation

  • Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2017. "Multivariate approximations to portfolio return distribution," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 347-361, September.
  • Handle: RePEc:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9231-3
    DOI: 10.1007/s10588-016-9231-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-016-9231-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-016-9231-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jondeau, Eric & Rockinger, Michael, 2001. "Gram-Charlier densities," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1457-1483, October.
    2. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    3. Trino-Manuel Ñíguez & Javier Perote, 2012. "Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 600-627, August.
    4. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    5. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    6. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    7. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    8. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    9. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    10. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    11. Javier Perote, 2004. "The multivariate Edgeworth-Sargan density," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(1), pages 77-96, April.
    12. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364.
    13. C. J. Corrado & Tie Su, 1997. "Implied volatility skews and stock return skewness and kurtosis implied by stock option prices," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 73-85, March.
    14. Sargan, J D, 1975. "Gram-Charlier Approximations Applied to t Ratios of k-Class Estimators," Econometrica, Econometric Society, vol. 43(2), pages 327-346, March.
    15. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    16. Esther B. Del Brio & Trino-Manuel Niguez & Javier Perote, 2009. "Gram-Charlier densities: a multivariate approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 855-868.
    17. Ñíguez, Trino-Manuel & Paya, Ivan & Peel, David & Perote, Javier, 2012. "On the stability of the constant relative risk aversion (CRRA) utility under high degrees of uncertainty," Economics Letters, Elsevier, vol. 115(2), pages 244-248.
    18. Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 225-239.
    19. Arnold Polanski & Evarist Stoja, 2010. "Incorporating higher moments into value-at-risk forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 523-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2017. "The kidnapping of Europe: High-order moments' transmission between developed and emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 96-115.
    2. Inés Jiménez & Andrés Mora-Valencia & Javier Perote, 2022. "Dynamic selection of Gram–Charlier expansions with risk targets: an application to cryptocurrencies," Risk Management, Palgrave Macmillan, vol. 24(1), pages 81-99, March.
    3. Inés Jiménez & Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2020. "Portfolio Risk Assessment under Dynamic (Equi)Correlation and Semi-Nonparametric Estimation: An Application to Cryptocurrencies," Mathematics, MDPI, vol. 8(12), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
    2. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    3. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    4. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2017. "The kidnapping of Europe: High-order moments' transmission between developed and emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 96-115.
    5. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    6. Trino-Manuel Niguez & Ivan Paya & David Peel & Javier Perote, 2013. "Higher-order moments in the theory of diversification and portfolio composition," Working Papers 18297128, Lancaster University Management School, Economics Department.
    7. Alfredo Trespalacios & Lina M. Cortés & Javier Perote, 2021. "Modeling Electricity Price and Quantity Uncertainty: An Application for Hedging with Forward Contracts," Energies, MDPI, vol. 14(11), pages 1-26, June.
    8. Trespalacios, Alfredo & Cortés, Lina M. & Perote, Javier, 2020. "Uncertainty in electricity markets from a semi-nonparametric approach," Energy Policy, Elsevier, vol. 137(C).
    9. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2023. "Multivariate dynamics between emerging markets and digital asset markets: An application of the SNP-DCC model," Emerging Markets Review, Elsevier, vol. 56(C).
    10. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2008. "Multivariate Gram-Charlier Densities," MPRA Paper 29073, University Library of Munich, Germany.
    11. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    12. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    13. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2017. "Measuring firm size distribution with semi-nonparametric densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 35-47.
    14. Trino-Manuel Ñíguez & Javier Perote, 2012. "Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 600-627, August.
    15. León, Ángel & Ñíguez, Trino-Manuel, 2021. "The transformed Gram Charlier distribution: Parametric properties and financial risk applications," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 323-349.
    16. Inés Jiménez & Andrés Mora-Valencia & Javier Perote, 2022. "Dynamic selection of Gram–Charlier expansions with risk targets: an application to cryptocurrencies," Risk Management, Palgrave Macmillan, vol. 24(1), pages 81-99, March.
    17. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    18. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364, April.
    19. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "VaR performance during the subprime and sovereign debt crises: An application to emerging markets," Emerging Markets Review, Elsevier, vol. 20(C), pages 23-41.
    20. Brenda Castillo-Brais & Ángel León & Juan Mora, 2022. "Estimating Value-at-Risk and Expected Shortfall: Do Polynomial Expansions Outperform Parametric Densities?," Mathematics, MDPI, vol. 10(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9231-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.