IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i6p905-d1359851.html
   My bibliography  Save this article

5th-Order Multivariate Edgeworth Expansions for Parametric Estimates

Author

Listed:
  • C. S. Withers

    (Callaghan Innovation (formerly Industrial Research Ltd.), Lower Hutt 5011, New Zealand)

Abstract

The only cases where exact distributions of estimates are known is for samples from exponential families, and then only for special functions of the parameters. So statistical inference was traditionally based on the asymptotic normality of estimates. To improve on this we need the Edgeworth expansion for the distribution of the standardised estimate. This is an expansion in n − 1 / 2 about the normal distribution, where n is typically the sample size. The first few terms of this expansion were originally given for the special case of a sample mean. In earlier work we derived it for any standard estimate, hugely expanding its application. We define an estimate w ^ of an unknown vector w in R p , as a standard estimate , if E w ^ → w as n → ∞ , and for r ≥ 1 the r th-order cumulants of w ^ have magnitude n 1 − r and can be expanded in n − 1 . Here we present a significant extension. We give the expansion of the distribution of any smooth function of w ^ , say t ( w ^ ) in R q , giving its distribution to n − 5 / 2 . We do this by showing that t ( w ^ ) , is a standard estimate of t ( w ) . This provides far more accurate approximations for the distribution of t ( w ^ ) than its asymptotic normality.

Suggested Citation

  • C. S. Withers, 2024. "5th-Order Multivariate Edgeworth Expansions for Parametric Estimates," Mathematics, MDPI, vol. 12(6), pages 1-28, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:905-:d:1359851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/6/905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/6/905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher S. Withers & Saralees Nadarajah, 2014. "Expansions about the Gamma for the Distribution and Quantiles of a Standard Estimate," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 693-713, September.
    2. Withers, Christopher S. & Nadarajah, Saralees, 2014. "The dual multivariate Charlier and Edgeworth expansions," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 76-85.
    3. Christopher Withers & Saralees Nadarajah, 2010. "Tilted Edgeworth expansions for asymptotically normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1113-1142, December.
    4. Withers, Christopher S. & Nadarajah, Saralees, 2012. "Improved confidence regions based on Edgeworth expansions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4366-4380.
    5. Andrius Čiginas & Dalius Pumputis, 2020. "Calibrated Edgeworth expansions of finite population L-statistics," Mathematical Population Studies, Taylor & Francis Journals, vol. 27(2), pages 59-80, April.
    6. Kakizawa, Yoshihide, 2016. "Some integrals involving multivariate Hermite polynomials: Application to evaluating higher-order local powers," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 162-168.
    7. Christopher Withers & Saralees Nadarajah, 2008. "Edgeworth expansions for functions of weighted empirical distributions with applications to nonparametric confidence intervals," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 751-768.
    8. C. Withers, 1988. "Nonparametric confidence intervals for functions of several distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 727-746, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Withers, Christopher S. & Nadarajah, Saralees, 2010. "The distribution and quantiles of functionals of weighted empirical distributions when observations have different distributions," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1093-1102, July.
    2. Kakizawa, Yoshihide, 2016. "Some integrals involving multivariate Hermite polynomials: Application to evaluating higher-order local powers," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 162-168.
    3. Christopher S. Withers & Saralees Nadarajah, 2022. "Cornish-Fisher Expansions for Functionals of the Weighted Partial Sum Empirical Distribution," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1791-1804, September.
    4. Christopher S. Withers & Saralees Nadarajah, 2014. "Expansions about the Gamma for the Distribution and Quantiles of a Standard Estimate," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 693-713, September.
    5. Christopher Withers & Saralees Nadarajah, 2008. "Edgeworth expansions for functions of weighted empirical distributions with applications to nonparametric confidence intervals," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 751-768.
    6. Christopher Withers & Saralees Nadarajah, 2010. "Expansions for log densities of asymptotically normal estimates," Statistical Papers, Springer, vol. 51(2), pages 247-257, June.
    7. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    8. Claudia Furlan & Cinzia Mortarino, 2020. "Comparison among simultaneous confidence regions for nonlinear diffusion models," Computational Statistics, Springer, vol. 35(4), pages 1951-1991, December.
    9. Christopher Withers & Saralees Nadarajah, 2013. "Correlation is first order independent of transformation," Statistical Papers, Springer, vol. 54(2), pages 443-456, May.
    10. Withers, Christopher S. & Nadarajah, Saralees, 2012. "Improved confidence regions based on Edgeworth expansions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4366-4380.
    11. Withers, Christopher S. & Nadarajah, Saralees, 2009. "Accurate tests and intervals based on linear cusum statistics," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 689-697, March.
    12. Withers, Christopher S. & Nadarajah, Saralees, 2009. "Accurate tests and intervals based on nonlinear cusum statistics," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2242-2250, November.
    13. Christopher Withers & Saralees Nadarajah, 2010. "Tilted Edgeworth expansions for asymptotically normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1113-1142, December.
    14. Christopher Withers & Saralees Nadarajah, 2012. "On the dependency for asymptotically independent estimates," Statistical Inference for Stochastic Processes, Springer, vol. 15(2), pages 127-132, July.
    15. Christopher S. Withers & Saralees Nadarajah, 2016. "Expansions for Log Densities of Multivariate Estimates," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 911-920, September.
    16. Christopher Withers & Saralees Nadarajah, 2012. "Unbiased estimates for a lognormal regression problem and a nonparametric alternative," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 207-227, February.
    17. Withers, Christopher S. & Nadarajah, Saralees, 2019. "Moments and cumulants of the extremes of a sample from a uniform distribution," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 238-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:905-:d:1359851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.