IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v87y2014icp12-17.html
   My bibliography  Save this article

Assumptions regarding right censoring in the presence of left truncation

Author

Listed:
  • Qian, Jing
  • Betensky, Rebecca A.

Abstract

Clinical studies using complex sampling often involve both truncation and censoring, where there are options for the assumptions of independence of censoring and event and for the relationship between censoring and truncation. In this paper, we clarify these choices, show certain equivalences, and provide examples.

Suggested Citation

  • Qian, Jing & Betensky, Rebecca A., 2014. "Assumptions regarding right censoring in the presence of left truncation," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 12-17.
  • Handle: RePEc:eee:stapro:v:87:y:2014:i:c:p:12-17
    DOI: 10.1016/j.spl.2013.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521300415X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Yann Tsai, 2009. "Pseudo-partial likelihood for proportional hazards models with biased-sampling data," Biometrika, Biometrika Trust, vol. 96(3), pages 601-615.
    2. Asgharian M. & MLan C.E. & Wolfson D. B., 2002. "Length-Biased Sampling With Right Censoring: An Unconditional Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 201-209, March.
    3. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    4. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Hartman & Sehee Kim & Kevin He & John D. Kalbfleisch, 2023. "Concordance indices with left‐truncated and right‐censored data," Biometrics, The International Biometric Society, vol. 79(3), pages 1624-1634, September.
    2. Chyong-Mei Chen & Pao-Sheng Shen, 2018. "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 250-272, April.
    3. Jing Qian & Sy Han Chiou & Rebecca A. Betensky, 2022. "Transformation model based regression with dependently truncated and independently censored data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 395-416, March.
    4. Sam Efromovich & Jufen Chu, 2018. "Hazard rate estimation for left truncated and right censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 889-917, August.
    5. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    2. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    3. Chi Hyun Lee & Jing Ning & Yu Shen, 2019. "Model diagnostics for the proportional hazards model with length-biased data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 79-96, January.
    4. Zexi Cai & Tony Sit, 2020. "Censored quantile regression model with time‐varying covariates under length‐biased sampling," Biometrics, The International Biometric Society, vol. 76(4), pages 1201-1215, December.
    5. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    6. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    7. Zhang, Qiaozhen & Dai, Hongsheng & Fu, Bo, 2016. "A proportional hazards model for time-to-event data with epidemiological bias," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 224-236.
    8. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    9. Lin, Cunjie & Zhou, Yong, 2014. "Inference for the treatment effects in two sample problems with right-censored and length-biased data," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 17-24.
    10. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    11. Jin Piao & Jing Ning & Yu Shen, 2019. "Semiparametric model for bivariate survival data subject to biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 409-429, April.
    12. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    13. Xuerong Chen & Yeqian Liu & Jianguo Sun & Yong Zhou, 2016. "Semiparametric Quantile Regression Analysis of Right-censored and Length-biased Failure Time Data with Partially Linear Varying Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 921-938, December.
    14. Lin, Cunjie & Zhou, Yong, 2016. "Semiparametric varying-coefficient model with right-censored and length-biased data," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 119-144.
    15. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    16. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    17. Christophe Chesneau & Isha Dewan & Hassan Doosti, 2012. "Wavelet linear density estimation for associated stratified size-biased sample," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 429-445.
    18. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    19. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    20. Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:87:y:2014:i:c:p:12-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.