IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v84y2014icp27-32.html
   My bibliography  Save this article

Fractional Poisson processes and their representation by infinite systems of ordinary differential equations

Author

Listed:
  • Kreer, Markus
  • Kızılersü, Ayşe
  • Thomas, Anthony W.

Abstract

Fractional Poisson processes, a rapidly growing area of non-Markovian stochastic processes, are useful in statistics to describe data from counting processes when waiting times are not exponentially distributed. We show that the fractional Kolmogorov–Feller equations for the probabilities at time t can be represented by an infinite linear system of ordinary differential equations of first order in a transformed time variable. These new equations resemble a linear version of the discrete coagulation–fragmentation equations, well-known from the non-equilibrium theory of gelation, cluster-dynamics and phase transitions in physics and chemistry.

Suggested Citation

  • Kreer, Markus & Kızılersü, Ayşe & Thomas, Anthony W., 2014. "Fractional Poisson processes and their representation by infinite systems of ordinary differential equations," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 27-32.
  • Handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:27-32
    DOI: 10.1016/j.spl.2013.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521300326X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orsingher, Enzo & Polito, Federico, 2013. "On the integral of fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1006-1017.
    2. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kreer, Markus, 2022. "An elementary proof for dynamical scaling for certain fractional non-homogeneous Poisson processes," Statistics & Probability Letters, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Macci, Claudio & Pacchiarotti, Barbara, 2015. "Large deviations for a class of counting processes and some statistical applications," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 36-48.
    2. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    3. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.
    4. Beghin, Luisa & Macci, Claudio, 2022. "Non-central moderate deviations for compound fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 185(C).
    5. K. K. Kataria & M. Khandakar, 2021. "On the Long-Range Dependence of Mixed Fractional Poisson Process," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1607-1622, September.
    6. Corina D. Constantinescu & Jorge M. Ramirez & Wei R. Zhu, 2019. "An application of fractional differential equations to risk theory," Finance and Stochastics, Springer, vol. 23(4), pages 1001-1024, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:27-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.