IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i4d10.1007_s10959-024-01361-1.html
   My bibliography  Save this article

Path Dynamics of Time-Changed Lévy Processes: A Martingale Approach

Author

Listed:
  • Alessandro Gregorio

    (“Sapienza” University of Rome)

  • Francesco Iafrate

    (“Sapienza” University of Rome)

Abstract

Lévy processes time-changed by inverse subordinators have been intensively studied in the last years. Their importance in connection with non-local operators and semi-Markov dynamics is well understood, but, in our view, several questions remain open concerning the probabilistic structure of such processes. The time-changed Lévy processes are particularly useful to describe complex systems with fractional and/or anomalous dynamics. The purpose of our work is to analyze the features of the sample paths of such processes, focusing on a martingale-based approach. We introduce the fractional Poisson random measure as the main tool for dealing with the jump component of time-changed càdlàg processes. Further, the fractional random measure is an interesting and novel topic in itself, and thus, it is thoroughly analyzed in the paper. A central role in our analysis is then played by fractional Poisson integrals (involving the aforementioned fractional Poisson measure) which allow a useful description of the random jumps. We investigate these stochastic integrals and the martingale property of their compensated counterpart. Therefore, we are able to obtain a semimartingale representation of time-changed processes analogous to the celebrated Lévy–Itô decomposition. Finally, an approximation scheme of such random processes will be discussed.

Suggested Citation

  • Alessandro Gregorio & Francesco Iafrate, 2024. "Path Dynamics of Time-Changed Lévy Processes: A Martingale Approach," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3246-3280, November.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01361-1
    DOI: 10.1007/s10959-024-01361-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01361-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01361-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marjorie Hahn & Kei Kobayashi & Sabir Umarov, 2012. "SDEs Driven by a Time-Changed Lévy Process and Their Associated Time-Fractional Order Pseudo-Differential Equations," Journal of Theoretical Probability, Springer, vol. 25(1), pages 262-279, March.
    2. Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
    3. Kei Kobayashi, 2011. "Stochastic Calculus for a Time-Changed Semimartingale and the Associated Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 24(3), pages 789-820, September.
    4. Mauro Politi & Taisei Kaizoji & Enrico Scalas, 2011. "Full characterization of the fractional Poisson process," Papers 1104.4234, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    2. Leonenko, Nikolai & Scalas, Enrico & Trinh, Mailan, 2017. "The fractional non-homogeneous Poisson process," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 147-156.
    3. Francesco Iafrate & Costantino Ricciuti, 2024. "Some Families of Random Fields Related to Multiparameter Lévy Processes," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3055-3088, November.
    4. Orsingher, Enzo & Polito, Federico, 2012. "The space-fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 852-858.
    5. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.
    6. Giacomo Ascione & Bruno Toaldo, 2019. "A Semi-Markov Leaky Integrate-and-Fire Model," Mathematics, MDPI, vol. 7(11), pages 1-24, October.
    7. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    8. Oraby, T. & Suazo, E. & Arrubla, H., 2023. "Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    10. Giacomo Ascione & Enrica Pirozzi, 2021. "Generalized Fractional Calculus for Gompertz-Type Models," Mathematics, MDPI, vol. 9(17), pages 1-32, September.
    11. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    12. Bareche, Aîcha & Bibi, Abdelouahab, 2023. "On inverse-Gamma distribution delayed by Poisson process," Statistics & Probability Letters, Elsevier, vol. 195(C).
    13. Chicheportiche, Rémy & Chakraborti, Anirban, 2017. "A model-free characterization of recurrences in stationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 312-318.
    14. Giacomo Ascione, 2020. "On the Construction of Some Deterministic and Stochastic Non-Local SIR Models," Mathematics, MDPI, vol. 8(12), pages 1-28, November.
    15. Davide Cocco & Massimiliano Giona, 2021. "Generalized Counting Processes in a Stochastic Environment," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    16. Orsingher, Enzo & Polito, Federico, 2013. "On the integral of fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1006-1017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01361-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.