IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i1p382-389.html
   My bibliography  Save this article

Stochastic order characterization of uniform integrability and tightness

Author

Listed:
  • Leskelä, Lasse
  • Vihola, Matti

Abstract

We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominating random variables. In particular, we show that, whenever a family of random variables is stochastically bounded by a p-integrable random variable for some p>1, there is no distinction between the strong order and the increasing convex order. These results also yield new characterizations of relative compactness in Wasserstein and Prohorov metrics.

Suggested Citation

  • Leskelä, Lasse & Vihola, Matti, 2013. "Stochastic order characterization of uniform integrability and tightness," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 382-389.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:382-389
    DOI: 10.1016/j.spl.2012.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212003690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Scarsini & Alfred Muller, 2006. "Stochastic order relations and lattices of probability measures," Post-Print hal-00539119, HAL.
    2. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lasse Leskelä, 2022. "Ross’s second conjecture and supermodular stochastic ordering," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 213-215, April.
    2. Dianetti, Jodi & Ferrari, Giorgio & Fischer, Markus & Nendel, Max, 2019. "Submodular Mean Field Games. Existence and Approximation of Solutions," Center for Mathematical Economics Working Papers 621, Center for Mathematical Economics, Bielefeld University.
    3. Nendel, Max, 2019. "A Note on Stochastic Dominance and Compactness," Center for Mathematical Economics Working Papers 623, Center for Mathematical Economics, Bielefeld University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    2. Kocourek, Pavel & Steiner, Jakub & Stewart, Colin, 2024. "Boundedly rational demand," Theoretical Economics, Econometric Society, vol. 19(4), November.
    3. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    4. Shaked, Moshe, 2007. "Stochastic comparisons of multivariate random sums in the Laplace transform order, with applications," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1339-1344, July.
    5. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    6. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    8. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    9. Chambers, Christopher P. & Ye, Siming, 2024. "Haves and have-nots: A theory of economic sufficientarianism," Journal of Economic Theory, Elsevier, vol. 217(C).
    10. Martin Kaae Jensen, 2018. "Distributional Comparative Statics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(1), pages 581-610.
    11. Leandro Nascimento, 2022. "Bounded arbitrage and nearly rational behavior," Papers 2212.02680, arXiv.org, revised Jul 2023.
    12. Giacomo Aletti & Caterina May & Piercesare Secchi, 2012. "A Functional Equation Whose Unknown is $\mathcal{P}([0,1])$ Valued," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1207-1232, December.
    13. Patrick Marsh, 2019. "The role of information in nonstationary regression," Discussion Papers 19/04, University of Nottingham, Granger Centre for Time Series Econometrics.
    14. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    15. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    16. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    17. Hoang, Lê Nguyên & Soumis, François & Zaccour, Georges, 2019. "The return function: A new computable perspective on Bayesian–Nash equilibria," European Journal of Operational Research, Elsevier, vol. 279(2), pages 471-485.
    18. Axel Anderson & Lones Smith, 2024. "The Comparative Statics of Sorting," American Economic Review, American Economic Association, vol. 114(3), pages 709-751, March.
    19. Stephan Eckstein & Gaoyue Guo & Tongseok Lim & Jan Obloj, 2019. "Robust pricing and hedging of options on multiple assets and its numerics," Papers 1909.03870, arXiv.org, revised Oct 2020.
    20. Berrendero, José R. & Cuevas, Antonio & Pateiro-López, Beatriz, 2016. "Shape classification based on interpoint distance distributions," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 237-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:382-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.