IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i12p1339-1344.html
   My bibliography  Save this article

Stochastic comparisons of multivariate random sums in the Laplace transform order, with applications

Author

Listed:
  • Shaked, Moshe

Abstract

In this paper we find interesting conditions under which vectors of random sums, with different summands and different random sizes, are ordered with respect to the multivariate Laplace transform order. The main result unifies various univariate and multivariate results from the literature. Some applications in reliability theory and insurance are described.

Suggested Citation

  • Shaked, Moshe, 2007. "Stochastic comparisons of multivariate random sums in the Laplace transform order, with applications," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1339-1344, July.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:12:p:1339-1344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00097-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kozubowski, Tomasz J. & Panorska, Anna K., 1998. "Weak Limits for Multivariate Random Sums," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 398-413, November.
    2. Denuit, Michel, 2001. "Laplace transform ordering of actuarial quantities," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 83-102, August.
    3. Pellerey, Franco, 1999. "Stochastic Comparisons for Multivariate Shock Models," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 42-55, October.
    4. Belzunce, Felix & Ortega, Eva-Maria & Pellerey, Franco & Ruiz, Jose M., 2006. "Variability of total claim amounts under dependence between claims severity and number of events," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 460-468, June.
    5. Hu, Taizhong & Pan, Xiaoming, 1999. "Preservation of multivariate dependence under multivariate claim models," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 171-179, November.
    6. Marco Scarsini & Alfred Muller, 2006. "Stochastic order relations and lattices of probability measures," Post-Print hal-00539119, HAL.
    7. Kolev, Nikolai & Paiva, Delhi, 2005. "Multinomial model for random sums," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 494-504, December.
    8. Li, Gang & Cheng, Kan & Jiang, Xiaoyue, 2006. "Negative ageing property of random sum," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 737-742, April.
    9. Cai, Jun & Willmot, Gordon E., 2005. "Monotonicity and aging properties of random sums," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 381-392, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariyafar, Saeed & Tata, Mahbanoo & Rezapour, Mohsen & Madadi, Mohsen, 2020. "Comparison of aggregation, minimum and maximum of two risky portfolios with dependent claims," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    2. Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Taizhong & Khaledi, Baha-Eldin & Shaked, Moshe, 2003. "Multivariate hazard rate orders," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 173-189, January.
    2. Kocourek, Pavel & Steiner, Jakub & Stewart, Colin, 2024. "Boundedly rational demand," Theoretical Economics, Econometric Society, vol. 19(4), November.
    3. Dianetti, Jodi, 2023. "Strong Solutions to Submodular Mean Field Games with Common Noise and Related McKean-Vlasov FBSDES," Center for Mathematical Economics Working Papers 674, Center for Mathematical Economics, Bielefeld University.
    4. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    5. Benjamin Brooks & Alexander Frankel & Emir Kamenica, 2022. "Information Hierarchies," Econometrica, Econometric Society, vol. 90(5), pages 2187-2214, September.
    6. Kolev, Nikolai & Paiva, Delhi, 2008. "Random sums of exchangeable variables and actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 147-153, February.
    7. Michel Denuit & Esther Frostig & Benny Levikson, 2007. "Supermodular Comparison of Time-to-Ruin Random Vectors," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 41-54, March.
    8. Leskelä, Lasse & Vihola, Matti, 2013. "Stochastic order characterization of uniform integrability and tightness," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 382-389.
    9. Badía, F.G. & Sangüesa, C. & Cha, J.H., 2014. "Stochastic comparison of multivariate conditionally dependent mixtures," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 82-94.
    10. F. G. Badía & C. Sangüesa, 2015. "Inventory models with nonlinear shortage costs and stochastic lead times; applications of shape properties of randomly stopped counting processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(5), pages 345-356, August.
    11. Belzunce, Félix & Shaked, Moshe, 2001. "Stochastic comparisons of mixtures of convexly ordered distributions with applications in reliability theory," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 363-372, July.
    12. Kayid, M. & Alamoudi, L., 2013. "Some results about the exponential ordering of inactivity time," Economic Modelling, Elsevier, vol. 33(C), pages 159-163.
    13. Chambers, Christopher P. & Ye, Siming, 2024. "Haves and have-nots: A theory of economic sufficientarianism," Journal of Economic Theory, Elsevier, vol. 217(C).
    14. Escudero, Laureano F. & Ortega, Eva-María, 2008. "Actuarial comparisons for aggregate claims with randomly right-truncated claims," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 255-262, October.
    15. Martin Kaae Jensen, 2018. "Distributional Comparative Statics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(1), pages 581-610.
    16. Anis M. Z., 2011. "Testing Exponentiality Against NBUL Alternatives Using Positive and Negative Fractional Moments," Stochastics and Quality Control, De Gruyter, vol. 26(2), pages 215-234, January.
    17. J. M. Fernández-Ponce & M. R. Rodríguez-Griñolo, 2017. "New properties of the orthant convex-type stochastic orders," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 618-637, September.
    18. Pavlova, Kristina P. & Cai, Jun & Willmot, Gordon E., 2006. "The preservation of classes of discrete distributions under convolution and mixing," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 391-405, April.
    19. Roberto Fontana & Elisa Luciano & Patrizia Semeraro, 2021. "Model risk in credit risk," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 176-202, January.
    20. Belzunce, Félix & Mercader, José A. & Ruiz, José M., 2003. "Multivariate aging properties of epoch times of nonhomogeneous processes," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 335-350, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:12:p:1339-1344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.