IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i8p1521-1529.html
   My bibliography  Save this article

Hierarchical reinforced urn processes

Author

Listed:
  • Fortini, S.
  • Petrone, S.

Abstract

We define a class of reinforced urn processes, based on Hoppe’s urn scheme, that are Markov exchangeable, with a countable and possibly unknown state space. This construction extends the reinforced urn processes developed by Muliere et al. (2000) and widely used in Bayesian nonparametric inference and survival analysis. We also shed light on the connections with apparently unrelated constructions, recently proposed in the machine learning literature, such as the infinite hidden Markov model, offering a general framework for a deeper study of their theoretical properties.

Suggested Citation

  • Fortini, S. & Petrone, S., 2012. "Hierarchical reinforced urn processes," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1521-1529.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:8:p:1521-1529
    DOI: 10.1016/j.spl.2012.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fortini, Sandra & Ladelli, Lucia & Petris, Giovanni & Regazzini, Eugenio, 0. "On mixtures of distributions of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 147-165, July.
    2. Muliere, P. & Secchi, P. & Walker, S. G., 2000. "Urn schemes and reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 88(1), pages 59-78, July.
    3. Lorenzo Trippa & Paolo Bulla & Sonia Petrone, 2011. "Extended Bernstein prior via reinforced urn processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 481-496, June.
    4. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    5. Muliere, Pietro & Secchi, Piercesare & Walker, Stephen, 2005. "Partially exchangeable processes indexed by the vertices of a k-tree constructed via reinforcement," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 661-677, April.
    6. Mezzetti, Maura & Muliere, Pietro & Bulla, Paolo, 2007. "An application of reinforced urn processes to determining maximum tolerated dose," Statistics & Probability Letters, Elsevier, vol. 77(7), pages 740-747, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Cheng & Pasquale Cirillo, 2019. "An Urn-Based Nonparametric Modeling of the Dependence between PD and LGD with an Application to Mortgages," Risks, MDPI, vol. 7(3), pages 1-21, July.
    2. Souto Arias, Luis A. & Cirillo, Pasquale, 2021. "Joint and survivor annuity valuation with a bivariate reinforced urn process," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 174-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.
    2. Cheng, Dan & Cirillo, Pasquale, 2018. "A reinforced urn process modeling of recovery rates and recovery times," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 1-17.
    3. Andrea Arfè & Stefano Peluso & Pietro Muliere, 2021. "The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 1-15, April.
    4. Pasquale Cirillo & Jürg Hüsler & Pietro Muliere, 2013. "Alarm Systems and Catastrophes from a Diverse Point of View," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 821-839, December.
    5. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Muliere, Pietro & Secchi, Piercesare & G. Walker, Stephen, 2003. "Reinforced random processes in continuous time," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 117-130, March.
    7. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    8. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    9. Gengjie Jia & Xue Zhong & Hae Kyung Im & Nathan Schoettler & Milton Pividori & D. Kyle Hogarth & Anne I. Sperling & Steven R. White & Edward T. Naureckas & Christopher S. Lyttle & Chikashi Terao & Yoi, 2022. "Discerning asthma endotypes through comorbidity mapping," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Huailan Liu & Zhiwang Chen & Jie Tang & Yuan Zhou & Sheng Liu, 2020. "Mapping the technology evolution path: a novel model for dynamic topic detection and tracking," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2043-2090, December.
    11. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    12. Yong Song & Tomasz Wo'zniak, 2020. "Markov Switching," Papers 2002.03598, arXiv.org.
    13. Mezzetti, Maura & Muliere, Pietro & Bulla, Paolo, 2007. "An application of reinforced urn processes to determining maximum tolerated dose," Statistics & Probability Letters, Elsevier, vol. 77(7), pages 740-747, April.
    14. Koltcov, Sergei, 2018. "Application of Rényi and Tsallis entropies to topic modeling optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1192-1204.
    15. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    16. repec:cte:wsrepe:ws131211 is not listed on IDEAS
    17. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    18. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
    19. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    20. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    21. Maheu, John M. & Yang, Qiao, 2016. "An infinite hidden Markov model for short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 202-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:8:p:1521-1529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.