IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v24y2021i1d10.1007_s11203-020-09224-2.html
   My bibliography  Save this article

The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes

Author

Listed:
  • Andrea Arfè

    (Harvard Medical School)

  • Stefano Peluso

    (University of Milano-Bicocca)

  • Pietro Muliere

    (Bocconi University)

Abstract

The literature on Bayesian methods for the analysis of discrete-time semi-Markov processes is sparse. In this paper, we introduce the semi-Markov beta-Stacy process, a stochastic process useful for the Bayesian non-parametric analysis of semi-Markov processes. The semi-Markov beta-Stacy process is conjugate with respect to data generated by a semi-Markov process, a property which makes it easy to obtain probabilistic forecasts. Its predictive distributions are characterized by a reinforced random walk on a system of urns.

Suggested Citation

  • Andrea Arfè & Stefano Peluso & Pietro Muliere, 2021. "The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 1-15, April.
  • Handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09224-2
    DOI: 10.1007/s11203-020-09224-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-020-09224-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-020-09224-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Bulla & Pietro Muliere, 2007. "Bayesian Nonparametric Estimation for Reinforced Markov Renewal Processes," Statistical Inference for Stochastic Processes, Springer, vol. 10(3), pages 283-303, October.
    2. Bulla, Jan & Bulla, Ingo, 2006. "Stylized facts of financial time series and hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2192-2209, December.
    3. Glen A. Satten & Maya R. Sternberg, 1999. "Fitting Semi-Markov Models to Interval-Censored Data with Unknown Initiation Times," Biometrics, The International Biometric Society, vol. 55(2), pages 507-513, June.
    4. Bulla, Jan, 2006. "Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series," MPRA Paper 7675, University Library of Munich, Germany.
    5. Muliere, Pietro & Secchi, Piercesare & G. Walker, Stephen, 2003. "Reinforced random processes in continuous time," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 117-130, March.
    6. Muliere, Pietro & Secchi, Piercesare & Walker, Stephen, 2005. "Partially exchangeable processes indexed by the vertices of a k-tree constructed via reinforcement," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 661-677, April.
    7. Giovanni Masala, 2013. "Hurricane Lifespan Modeling through a Semi‐Markov Parametric Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 369-384, July.
    8. Muliere, P. & Secchi, P. & Walker, S. G., 2000. "Urn schemes and reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 88(1), pages 59-78, July.
    9. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Cheng & Pasquale Cirillo, 2019. "An Urn-Based Nonparametric Modeling of the Dependence between PD and LGD with an Application to Mortgages," Risks, MDPI, vol. 7(3), pages 1-21, July.
    2. Souto Arias, Luis A. & Cirillo, Pasquale, 2021. "Joint and survivor annuity valuation with a bivariate reinforced urn process," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 174-189.
    3. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    4. Vlad Stefan Barbu & Guglielmo D’Amico & Thomas Gkelsinis, 2021. "Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable Systems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    5. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    6. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    7. Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2019. "Inference of Binary Regime Models with Jump Discontinuities," Papers 1910.10606, arXiv.org, revised Mar 2022.
    8. Gallo, Giampiero M. & Otranto, Edoardo, 2008. "Volatility spillovers, interdependence and comovements: A Markov Switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
    9. Milan Kumar Das & Anindya Goswami, 2018. "Testing of Binary Regime Switching Models using Squeeze Duration Analysis," Papers 1807.04393, arXiv.org, revised Aug 2018.
    10. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    11. Elliott, Robert & Limnios, Nikolaos & Swishchuk, Anatoliy, 2013. "Filtering hidden semi-Markov chains," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2007-2014.
    12. Haas, Markus, 2009. "Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1674-1683, August.
    13. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    14. Muliere, Pietro & Secchi, Piercesare & Walker, Stephen, 2005. "Partially exchangeable processes indexed by the vertices of a k-tree constructed via reinforcement," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 661-677, April.
    15. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    16. Biswas, Arunangshu & Goswami, Anindya & Overbeck, Ludger, 2018. "Option pricing in a regime switching stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 116-126.
    17. Arunangshu Biswas & Anindya Goswami & Ludger Overbeck, 2017. "Option Pricing in a Regime Switching Stochastic Volatility Model," Papers 1707.01237, arXiv.org, revised Jan 2018.
    18. Liu, Zhenya & Wang, Shixuan, 2017. "Decoding Chinese stock market returns: Three-state hidden semi-Markov model," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 127-149.
    19. Pasquale Cirillo & Jürg Hüsler & Pietro Muliere, 2013. "Alarm Systems and Catastrophes from a Diverse Point of View," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 821-839, December.
    20. Carlos A. Abanto‐Valle & Roland Langrock & Ming‐Hui Chen & Michel V. Cardoso, 2017. "Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 394-408, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09224-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.