IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i12p2136-2144.html
   My bibliography  Save this article

Estimating an endpoint with high order moments in the Weibull domain of attraction

Author

Listed:
  • Girard, Stéphane
  • Guillou, Armelle
  • Stupfler, Gilles

Abstract

We present a method for estimating the endpoint of a unidimensional sample when the distribution function belongs to the Weibull-max domain of attraction. The approach relies on transforming the variable of interest and then using high order moments of the positive variable obtained this way. It is assumed that the order of the moments goes to infinity. We give conditions on the rate of divergence to get the weak and strong consistency as well as the asymptotic normality of the estimator. The good performance of the estimator is illustrated on some finite sample situations.

Suggested Citation

  • Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2012. "Estimating an endpoint with high order moments in the Weibull domain of attraction," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2136-2144.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2136-2144
    DOI: 10.1016/j.spl.2012.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Julian Z. Wang, 2005. "Bayesian likelihood methods for estimating the end point of a distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 717-729, November.
    2. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    3. Deyuan Li & Liang Peng & Yongcheng Qi, 2011. "Empirical likelihood confidence intervals for the endpoint of a distribution function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 353-366, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    2. Daouia, Abdelaati & Girard, Stéphane & Guillou, Armelle, 2014. "A Γ-moment approach to monotonic boundary estimation," Journal of Econometrics, Elsevier, vol. 178(2), pages 727-740.
    3. Hong-Jiang Wu & Ying-Ying Zhang & Han-Yu Li, 2023. "Expectation identities from integration by parts for univariate continuous random variables with applications to high-order moments," Statistical Papers, Springer, vol. 64(2), pages 477-496, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    2. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    3. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    5. HaiYing Wang & Nancy Flournoy & Eloi Kpamegan, 2014. "A new bounded log-linear regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 695-720, July.
    6. Ouindllassida Jean-Etienne Ou´edraogo & Edoh Katchekpele & Simplice Dossou-Gb´et´e, 2021. "Marginalized Maximum Likelihood for Parameters Estimation of the Three Parameter Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 1-62, July.
    7. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    8. Stéphane Girard & Armelle Guillou & Gilles Stupfler, 2012. "Estimating an endpoint with high-order moments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 697-729, December.
    9. Wang, HaiYing & Flournoy, Nancy, 2015. "On the consistency of the maximum likelihood estimator for the three parameter lognormal distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 57-64.
    10. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    11. Toru Ogura & Takatoshi Sugiyama & Nariaki Sugiura, 2020. "Estimation of the Shape Parameter of a Wear-Out Failure Period for a Three-Parameter Weibull Distribution in a Small Sample," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-39, November.
    12. Castillo, Joan del & Serra, Isabel, 2015. "Likelihood inference for generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 116-128.
    13. Natalie Neumeyer & Leonie Selk & Charles Tillier, 2020. "Semi-parametric transformation boundary regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1287-1315, December.
    14. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    15. Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
    16. Wang, Haiying & Sun, Dongchu, 2012. "Objective Bayesian analysis for a truncated model," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2125-2135.
    17. Sun, Haoze & Jiang, Yuexiang, 2014. "Empirical likelihood based confidence intervals for the tail index when γ<−1/2," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 149-157.
    18. Nagatsuka, Hideki & Kamakura, Toshinari & Balakrishnan, N., 2013. "A consistent method of estimation for the three-parameter Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 210-226.
    19. Christophe Chesneau & Salima El Kolei & Junke Kou & Fabien Navarro, 2019. "Nonparametric estimation in a regression model with additive and multiplicative noise," Papers 1906.07695, arXiv.org, revised Jun 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2136-2144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.