IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v77y2014i5p695-720.html
   My bibliography  Save this article

A new bounded log-linear regression model

Author

Listed:
  • HaiYing Wang
  • Nancy Flournoy
  • Eloi Kpamegan

Abstract

In this paper we introduce a new regression model in which the response variable is bounded by two unknown parameters. A special case is a bounded alternative to the four parameter logistic model. The four parameter model which has unbounded responses is widely used, for instance, in bioassays, nutrition, genetics, calibration and agriculture. In reality, the responses are often bounded although the bounds may be unknown, and in that situation, our model reflects the data-generating mechanism better. Complications arise for the new model, however, because the likelihood function is unbounded, and the global maximizers are not consistent estimators of unknown parameters. Although the two sample extremes, the smallest and the largest observations, are consistent estimators for the two unknown boundaries, they have a slow convergence rate and are asymptotically biased. Improved estimators are developed by correcting for the asymptotic biases of the two sample extremes in the one sample case; but even these consistent estimators do not obtain the optimal convergence rate. To obtain efficient estimation, we suggest using the local maximizers of the likelihood function, i.e., the solution to the likelihood equations. We prove that, with probability approaching one as the sample size goes to infinity, there exists a solution to the likelihood equation that is consistent at the rate of the square root of the sample size and it is asymptotically normally distributed. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • HaiYing Wang & Nancy Flournoy & Eloi Kpamegan, 2014. "A new bounded log-linear regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 695-720, July.
  • Handle: RePEc:spr:metrik:v:77:y:2014:i:5:p:695-720
    DOI: 10.1007/s00184-013-0460-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-013-0460-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-013-0460-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Julian Z. Wang, 2005. "Bayesian likelihood methods for estimating the end point of a distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 717-729, November.
    2. Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Tarima & Nancy Flournoy, 2022. "Most powerful test sequences with early stopping options," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 491-513, May.
    2. Sergey Tarima & Nancy Flournoy, 2019. "Asymptotic properties of maximum likelihood estimators with sample size recalculation," Statistical Papers, Springer, vol. 60(2), pages 373-394, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Gaynor & Nirav Mehta & Seth Richards-Shubik, 2023. "Optimal Contracting with Altruistic Agents: Medicare Payments for Dialysis Drugs," American Economic Review, American Economic Association, vol. 113(6), pages 1530-1571, June.
    2. Nathan H. Miller & Matthew Osborne, 2014. "Spatial differentiation and price discrimination in the cement industry: evidence from a structural model," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 221-247, June.
    3. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    4. Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    5. Predrag M. Popović & Miroslav M. Ristić & Aleksandar S. Nastić, 2016. "A geometric bivariate time series with different marginal parameters," Statistical Papers, Springer, vol. 57(3), pages 731-753, September.
    6. Božidar Popović & Saralees Nadarajah & Miroslav Ristić, 2013. "A new non-linear AR(1) time series model having approximate beta marginals," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 71-92, January.
    7. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
    8. Ouindllassida Jean-Etienne Ou´edraogo & Edoh Katchekpele & Simplice Dossou-Gb´et´e, 2021. "Marginalized Maximum Likelihood for Parameters Estimation of the Three Parameter Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 1-62, July.
    9. Muhammad Ahsan ul Haq & Sharqa Hashmi & Khaoula Aidi & Pedro Luiz Ramos & Francisco Louzada, 2023. "Unit Modified Burr-III Distribution: Estimation, Characterizations and Validation Test," Annals of Data Science, Springer, vol. 10(2), pages 415-440, April.
    10. repec:jss:jstsof:43:i09 is not listed on IDEAS
    11. Alai, Daniel H. & Landsman, Zinoviy & Sherris, Michael, 2013. "Lifetime dependence modelling using a truncated multivariate gamma distribution," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 542-549.
    12. Robert Vlacuha & Boris Frankovic, 2015. "The Calibration of Weights by Calif Tool in the Practice of the Statistical Office of the Slovak Republic," Romanian Statistical Review, Romanian Statistical Review, vol. 63(2), pages 153-164, June.
    13. Daniel Alai & Zinoviy Landsman & Michael Sherris, 2012. "Lifetime Dependence Modelling using the Truncated Multivariate Gamma Distribution," Working Papers 201211, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
    14. Sy Han Chiou & Gongjun Xu & Jun Yan & Chiung‐Yu Huang, 2018. "Semiparametric estimation of the accelerated mean model with panel count data under informative examination times," Biometrics, The International Biometric Society, vol. 74(3), pages 944-953, September.
    15. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2012. "Estimating an endpoint with high order moments in the Weibull domain of attraction," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2136-2144.
    16. Stéphane Girard & Armelle Guillou & Gilles Stupfler, 2012. "Estimating an endpoint with high-order moments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 697-729, December.
    17. Wang, Zhu, 2013. "Converting Odds Ratio to Relative Risk in Cohort Studies with Partial Data Information," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i05).
    18. Liu, Ruixuan & Yu, Zhengfei, 2022. "Sample selection models with monotone control functions," Journal of Econometrics, Elsevier, vol. 226(2), pages 321-342.
    19. Holmberg, Johan, 2021. "Earnings and Labor Market Dynamics: Indirect Inference Based on Swedish Register Data," Umeå Economic Studies 984, Umeå University, Department of Economics.
    20. Martin Gaynor & Nirav Mehta & Seth Richards-Shubik, 2020. "Optimal Contracting with Altruistic Agents," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20203, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    21. Wang, HaiYing & Flournoy, Nancy, 2015. "On the consistency of the maximum likelihood estimator for the three parameter lognormal distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 57-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:77:y:2014:i:5:p:695-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.