IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v84y2014icp149-157.html
   My bibliography  Save this article

Empirical likelihood based confidence intervals for the tail index when γ<−1/2

Author

Listed:
  • Sun, Haoze
  • Jiang, Yuexiang

Abstract

Empirical mortality data reveals that there is a finite age limit in the life span of humans, which means that it has a negative tail index. So far, there is a little literature on the confidence intervals for the tail index, especially for the negative tail index. In this paper, we construct its empirical likelihood based confidence intervals when γ<−1/2, which is known as the irregular case and derive the asymptotic χ2(1) distribution. At last a limited simulation study is conducted, which indicates that our method is better than the normal approximation in the sense of coverage probability and less sensitive to the selection of k.

Suggested Citation

  • Sun, Haoze & Jiang, Yuexiang, 2014. "Empirical likelihood based confidence intervals for the tail index when γ<−1/2," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 149-157.
  • Handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:149-157
    DOI: 10.1016/j.spl.2013.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213003350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    2. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    3. Ngai Chan & Liang Peng & Rongmao Zhang, 2012. "Interval estimation of the tail index of a GARCH(1,1) model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 546-565, September.
    4. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    5. Deyuan Li & Liang Peng & Yongcheng Qi, 2011. "Empirical likelihood confidence intervals for the endpoint of a distribution function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 353-366, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    3. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    6. de Haan, Laurens & Canto e Castro, Luisa, 2006. "A class of distribution functions with less bias in extreme value estimation," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1617-1624, September.
    7. Neves, Cláudia & Pereira, António, 2010. "Detecting finiteness in the right endpoint of light-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 437-444, March.
    8. Patrick de Fontnouvelle & Eric Rosengren & John Jordan, 2007. "Implications of Alternative Operational Risk Modeling Techniques," NBER Chapters, in: The Risks of Financial Institutions, pages 475-505, National Bureau of Economic Research, Inc.
    9. Jürg Hüsler & Deyuan Li, 2008. "Weak Convergence of the Empirical Mean Excess Process with Application to Estimate the Negative Tail Index," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 577-593, December.
    10. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    11. Dufour, Jean-Marie & Kurz-Kim, Jeong-Ryeol, 2010. "Exact inference and optimal invariant estimation for the stability parameter of symmetric [alpha]-stable distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 180-194, March.
    12. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    13. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    14. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    15. Ana-Maria Gavril, 2009. "Exchange Rate Risk: Heads or Tails," Advances in Economic and Financial Research - DOFIN Working Paper Series 35, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    16. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    17. Enrico Biffis & Erik Chavez, 2014. "Tail Risk in Commercial Property Insurance," Risks, MDPI, vol. 2(4), pages 1-18, September.
    18. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    19. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    20. Einmahl, J.H.J. & Lin, T., 2003. "Asymptotic Normality of Extreme Value Estimators on C[0,1]," Discussion Paper 2003-132, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:149-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.