IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i6d10.1007_s10463-019-00731-5.html
   My bibliography  Save this article

Semi-parametric transformation boundary regression models

Author

Listed:
  • Natalie Neumeyer

    (University of Hamburg)

  • Leonie Selk

    (University of Hamburg)

  • Charles Tillier

    (University of Hamburg)

Abstract

In the context of nonparametric regression models with one-sided errors, we consider parametric transformations of the response variable in order to obtain independence between the errors and the covariates. In view of estimating the transformation parameter, we use a minimum distance approach and show the uniform consistency of the estimator under mild conditions. The boundary curve, i.e., the regression function, is estimated applying a smoothed version of a local constant approximation for which we also prove the uniform consistency. We deal with both cases of random covariates and deterministic (fixed) design points. To highlight the applicability of the procedures and to demonstrate their performance, the small sample behavior is investigated in a simulation study using the so-called Yeo–Johnson transformations.

Suggested Citation

  • Natalie Neumeyer & Leonie Selk & Charles Tillier, 2020. "Semi-parametric transformation boundary regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1287-1315, December.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:6:d:10.1007_s10463-019-00731-5
    DOI: 10.1007/s10463-019-00731-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00731-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00731-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colling, Benjamin & Van Keilegom, Ingrid, 2016. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," LIDAM Discussion Papers ISBA 2016031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    3. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    4. Paul Wilson, 2003. "Testing Independence in Models of Productive Efficiency," Journal of Productivity Analysis, Springer, vol. 20(3), pages 361-390, November.
    5. Mu, Yunming & He, Xuming, 2007. "Power Transformation Toward a Linear Regression Quantile," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 269-279, March.
    6. Colling, Benjamin & Van Keilegom, Ingrid, 2016. "Goodness-of-fit tests in semiparametric transformation models," LIDAM Reprints ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    8. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    9. Daouia, Abdelaati & Noh, Hohsuk & Park, Byeong U., 2016. "Data envelope fitting with constrained polynomial splines," LIDAM Reprints ISBA 2016011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Hardle, W. & Park, B. U. & Tsybakov, A. B., 1995. "Estimation of Non-sharp Support Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 205-218, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    2. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    3. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    4. Moragues, Raul & Aparicio, Juan & Esteve, Miriam, 2023. "An unsupervised learning-based generalization of Data Envelopment Analysis," Operations Research Perspectives, Elsevier, vol. 11(C).
    5. España, Victor J. & Aparicio, Juan & Barber, Xavier & Esteve, Miriam, 2024. "Estimating production functions through additive models based on regression splines," European Journal of Operational Research, Elsevier, vol. 312(2), pages 684-699.
    6. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    7. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    8. Nick Kloodt & Natalie Neumeyer & Ingrid Keilegom, 2021. "Specification testing in semi-parametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 980-1003, December.
    9. Onizuka, Takahiro & Iwashige, Fumiya & Hashimoto, Shintaro, 2024. "Bayesian boundary trend filtering," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    10. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    11. Gilbert, R. Alton & Wheelock, David C. & Wilson, Paul W., 2004. "New evidence on the Fed's productivity in providing payments services," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2175-2190, September.
    12. Cheng, Ming-Yen & Hall, Peter, 2006. "Methods for tracking support boundaries with corners," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1870-1893, September.
    13. G Simpson, 2005. "Programmatic efficiency comparisons between unequally sized groups of DMUs in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1431-1438, December.
    14. Jeong, Seok-Oh & Park, Byeong U., 2004. "Limit Distribution of Convex-Hull Estimators of Boundaries," Papers 2004,39, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    15. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    16. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    17. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    18. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," IDEI Working Papers 611, Institut d'Économie Industrielle (IDEI), Toulouse.
    19. Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
    20. Hwang, J. H. & Park, B. U. & Ryu, W., 2002. "Limit theorems for boundary function estimators," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 353-360, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:6:d:10.1007_s10463-019-00731-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.