IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i10p1761-1767.html
   My bibliography  Save this article

On the approximation of copulas via shuffles of Min

Author

Listed:
  • Durante, Fabrizio
  • Sánchez, Juan Fernández

Abstract

We study a multivariate extension of shuffles of Min that has a probabilistic interpretation in terms of mutually completely dependent process. The closure properties of the class of such copulas under different types of convergence is investigated.

Suggested Citation

  • Durante, Fabrizio & Sánchez, Juan Fernández, 2012. "On the approximation of copulas via shuffles of Min," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1761-1767.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1761-1767
    DOI: 10.1016/j.spl.2012.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karl Siburg & Pavel Stoimenov, 2010. "A measure of mutual complete dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(2), pages 239-251, March.
    2. Piotr Mikusiński & Michael Taylor, 2010. "Some approximations of n-copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(3), pages 385-414, November.
    3. Zephyr, 2010. "The city," City, Taylor & Francis Journals, vol. 14(1-2), pages 154-155, February.
    4. Puccetti, Giovanni & Scarsini, Marco, 2010. "Multivariate comonotonicity," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 291-304, January.
    5. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    6. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    7. Durante, Fabrizio & Fernández-Sánchez, Juan, 2010. "Multivariate shuffles and approximation of copulas," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1827-1834, December.
    8. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ansari Jonathan & Rüschendorf Ludger, 2018. "Ordering risk bounds in factor models," Dependence Modeling, De Gruyter, vol. 6(1), pages 259-287, November.
    2. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2018. "Rearrangement algorithm and maximum entropy," Annals of Operations Research, Springer, vol. 261(1), pages 107-134, February.
    3. Juan Fernández Sánchez & Wolfgang Trutschnig, 2015. "Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and Iterated Function Systems," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1311-1336, December.
    4. Durante, Fabrizio & Fernández Sánchez, Juan & Sempi, Carlo, 2013. "Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 897-905.
    5. Durante, Fabrizio & Fernández Sánchez, Juan & Trutschnig, Wolfgang, 2014. "Multivariate copulas with hairpin support," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 323-334.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    2. Arthur Charpentier & Alfred Galichon & Marc Henry, 2012. "Local Utility and Multivariate Risk Aversion," CIRJE F-Series CIRJE-F-836, CIRJE, Faculty of Economics, University of Tokyo.
    3. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    4. Chamnan Wongtawan & Sumetkijakan Songkiat, 2023. "Characterization of pre-idempotent Copulas," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-12, January.
    5. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    6. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    7. Rose-Anne Dana, 2011. "Comonotonicity, Efficient Risk-sharing and Equilibria in markets with short-selling for concave law-invariant utilities," Post-Print hal-00655172, HAL.
    8. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
    9. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    10. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
    11. Galichon, Alfred & Henry, Marc, 2012. "Dual theory of choice with multivariate risks," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1501-1516.
    12. Wang, Ruodu & Zitikis, Ričardas, 2020. "Weak comonotonicity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 386-397.
    13. Carlier, G. & Dana, R.-A. & Galichon, A., 2012. "Pareto efficiency for the concave order and multivariate comonotonicity," Journal of Economic Theory, Elsevier, vol. 147(1), pages 207-229.
    14. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    15. Guo, Nan & Wang, Fang & Yang, Jingping, 2017. "Remarks on composite Bernstein copula and its application to credit risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 38-48.
    16. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 35-51.
    17. Cominetti, Roberto & Dose, Valerio & Scarsini, Marco, 2024. "Monotonicity of equilibria in nonatomic congestion games," European Journal of Operational Research, Elsevier, vol. 316(2), pages 754-766.
    18. Ludger Rüschendorf, 2012. "Worst case portfolio vectors and diversification effects," Finance and Stochastics, Springer, vol. 16(1), pages 155-175, January.
    19. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    20. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2016. "The Empirical Beta Copula," LIDAM Discussion Papers ISBA 2016032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1761-1767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.