IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v8y2020i1p119-131n7.html
   My bibliography  Save this article

Bayesian estimation of generalized partition of unity copulas

Author

Listed:
  • Masuhr Andreas

    (Institute of Econometrics, Department of Economics, University of Münster, Am Stadtgraben 9, 48143Münster, Germany)

  • Trede Mark

    (Institute of Econometrics, Department of Economics, University of Münster, Am Stadtgraben 9, 48143Münster, Germany)

Abstract

This paper proposes a Bayesian estimation algorithm to estimate Generalized Partition of Unity Copulas (GPUC), a class of nonparametric copulas recently introduced by [18]. The first approach is a random walk Metropolis-Hastings (RW-MH) algorithm, the second one is a random blocking random walk Metropolis-Hastings algorithm (RBRW-MH). Both approaches are Markov chain Monte Carlo methods and can cope with ˛at priors. We carry out simulation studies to determine and compare the efficiency of the algorithms. We present an empirical illustration where GPUCs are used to nonparametrically describe the dependence of exchange rate changes of the crypto-currencies Bitcoin and Ethereum.

Suggested Citation

  • Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
  • Handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:119-131:n:7
    DOI: 10.1515/demo-2020-0007
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2020-0007
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2020-0007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    2. Yukun Liu & Aleh Tsyvinski, 2018. "Risks and Returns of Cryptocurrency," NBER Working Papers 24877, National Bureau of Economic Research, Inc.
    3. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    4. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    5. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    6. Albert S. Hu & Christine A. Parlour & Uday Rajan, 2019. "Cryptocurrencies: Stylized facts on a new investible instrument," Financial Management, Financial Management Association International, vol. 48(4), pages 1049-1068, December.
    7. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
    8. Joerg Osterrieder & Julian Lorenz, 2017. "A Statistical Risk Assessment Of Bitcoin And Its Extreme Tail Behavior," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-19, March.
    9. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    10. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
    11. Dou, Xiaoling & Kuriki, Satoshi & Lin, Gwo Dong & Richards, Donald, 2016. "EM algorithms for estimating the Bernstein copula," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 228-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
    2. Arthur A. B. Pessa & Matjaz Perc & Haroldo V. Ribeiro, 2023. "Age and market capitalization drive large price variations of cryptocurrencies," Papers 2302.12319, arXiv.org.
    3. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    4. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    6. Ouandlous, Arav & Barkoulas, John T. & Pantos, Themis D., 2022. "Extremity in bitcoin market activity," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    7. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.
    9. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    11. Garnier, Josselin & Solna, Knut, 2019. "Chaos and order in the bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 708-721.
    12. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    13. Kumar, Anoop S. & Anandarao, S., 2019. "Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 448-458.
    14. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    15. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    16. Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Forecasting, MDPI, vol. 3(2), pages 1-44, May.
    17. Stavroyiannis, Stavros & Babalos, Vassilios & Bekiros, Stelios & Lahmiri, Salim & Uddin, Gazi Salah, 2019. "The high frequency multifractal properties of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 62-71.
    18. Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
    19. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    20. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:119-131:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.