Importance sampling as a variational approximation
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019.
"Multilateral index number systems for international price comparisons: Properties, existence and uniqueness,"
Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
- Gholamreza Hajargasht & Prasada Rao, 2018. "Multilateral Index Number Systems for International Price Comparisons: Properties, Existence and Uniqueness," Papers 1811.04197, arXiv.org, revised Dec 2018.
- Gholamreza Hajargasht & D.S. Prasada Rao, 2019. "Multilateral Index Number Systems for International Price Comparisons: Properties, Existence and Uniqueness," CEPA Working Papers Series WP032019, School of Economics, University of Queensland, Australia.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
- Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
- Falk Bräuning & Siem Jan Koopman, 2016.
"The dynamic factor network model with an application to global credit risk,"
Working Papers
16-13, Federal Reserve Bank of Boston.
- Falk Bräuning & Siem Jan Koopman, 2016. "The Dynamic Factor Network Model with an Application to Global Credit-Risk," Tinbergen Institute Discussion Papers 16-105/III, Tinbergen Institute.
- Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
- Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019.
"Speeding Up MCMC by Efficient Data Subsampling,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
- Quiroz, Matias & Villani, Mattias & Kohn, Robert, 2015. "Speeding Up Mcmc By Efficient Data Subsampling," Working Paper Series 297, Sveriges Riksbank (Central Bank of Sweden).
- Kohn, Robert & Quiroz, Matias & Tran, Minh-Ngoc & Villani, Mattias, 2016. "Speeding up MCMC by Efficient Data Subsampling," Working Papers 2123/16205, University of Sydney Business School, Discipline of Business Analytics.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Korobilis, Dimitris & Koop, Gary, 2018.
"Variational Bayes inference in high-dimensional time-varying parameter models,"
Essex Finance Centre Working Papers
22665, University of Essex, Essex Business School.
- Gary Koop & Dimitris Korobilis, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Working Paper series 18-31, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," MPRA Paper 87972, University Library of Munich, Germany.
- Ong, Victor M.-H. & Nott, David J. & Tran, Minh-Ngoc & Sisson, Scott A. & Drovandi, Christopher C., 2018. "Likelihood-free inference in high dimensions with synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 271-291.
- Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
- Chan, Joshua C.C. & Yu, Xuewen, 2022.
"Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Joshua C.C. Chan & Xuewen Yu, 2020. "Fast and accurate variational inference for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2020-108, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
- Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
- Gholamreza Hajargasht & William E. Griffiths, 2018.
"Estimation and testing of stochastic frontier models using variational Bayes,"
Journal of Productivity Analysis, Springer, vol. 50(1), pages 1-24, October.
- Gholamreza Hajargasht & William E. Griffiths, 2016. "Estimation and Testing of Stochastic Frontier Models using Variational Bayes," Department of Economics - Working Papers Series 2024, The University of Melbourne.
- Reza Hajargasht, 2019. "Approximation Properties of Variational Bayes for Vector Autoregressions," Papers 1903.00617, arXiv.org.
- Arthur White & Thomas Brendan Murphy, 2016. "Exponential family mixed membership models for soft clustering of multivariate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 521-540, December.
- Yin Song & Shufei Ge & Jiguo Cao & Liangliang Wang & Farouk S. Nathoo, 2022. "A Bayesian spatial model for imaging genetics," Biometrics, The International Biometric Society, vol. 78(2), pages 742-753, June.
- Angelo Mele, 2013. "Approximate variational inference for a model of social interactions," Working Papers 13-16, NET Institute.
- McGrory, C.A. & Pettitt, A.N. & Titterington, D.M. & Alston, C.L. & Kelly, M., 2016. "Transdimensional sequential Monte Carlo using variational Bayes — SMCVB," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 246-254.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019.
"Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage,"
Economic Statistics Centre of Excellence (ESCoE) Discussion Papers
ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian inference in large Vector Autoregressions with hierarchical shrinkage," CAMA Working Papers 2019-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
More about this item
Keywords
Bayesian computation Importance sampling Variational approximation;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1052-1055. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.