IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i2p742-753.html
   My bibliography  Save this article

A Bayesian spatial model for imaging genetics

Author

Listed:
  • Yin Song
  • Shufei Ge
  • Jiguo Cao
  • Liangliang Wang
  • Farouk S. Nathoo

Abstract

We develop a Bayesian bivariate spatial model for multivariate regression analysis applicable to studies examining the influence of genetic variation on brain structure. Our model is motivated by an imaging genetics study of the Alzheimer's Disease Neuroimaging Initiative (ADNI), where the objective is to examine the association between images of volumetric and cortical thickness values summarizing the structure of the brain as measured by magnetic resonance imaging (MRI) and a set of 486 single nucleotide polymorphism (SNPs) from 33 Alzheimer's disease (AD) candidate genes obtained from 632 subjects. A bivariate spatial process model is developed to accommodate the correlation structures typically seen in structural brain imaging data. First, we allow for spatial correlation on a graph structure in the imaging phenotypes obtained from a neighborhood matrix for measures on the same hemisphere of the brain. Second, we allow for correlation in the same measures obtained from different hemispheres (left/right) of the brain. We develop a mean‐field variational Bayes algorithm and a Gibbs sampling algorithm to fit the model. We also incorporate Bayesian false discovery rate (FDR) procedures to select SNPs. We implement the methodology in a new release of the R package bgsmtr. We show that the new spatial model demonstrates superior performance over a standard model in our application. Data used in the preparation of this article were obtained from the ADNI database (https://adni.loni.usc.edu).

Suggested Citation

  • Yin Song & Shufei Ge & Jiguo Cao & Liangliang Wang & Farouk S. Nathoo, 2022. "A Bayesian spatial model for imaging genetics," Biometrics, The International Biometric Society, vol. 78(2), pages 742-753, June.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:742-753
    DOI: 10.1111/biom.13460
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13460
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    2. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    3. Ren, Qian & Banerjee, Sudipto & Finley, Andrew O. & Hodges, James S., 2011. "Variational Bayesian methods for spatial data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3197-3217, December.
    4. Hongtu Zhu & Zakaria Khondker & Zhaohua Lu & Joseph G. Ibrahim, 2014. "Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 977-990, September.
    5. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    6. Jeffrey S. Morris & Philip J. Brown & Richard C. Herrick & Keith A. Baggerly & Kevin R. Coombes, 2008. "Bayesian Analysis of Mass Spectrometry Proteomic Data Using Wavelet-Based Functional Mixed Models," Biometrics, The International Biometric Society, vol. 64(2), pages 479-489, June.
    7. Derrek P. Hibar & Jason L. Stein & Miguel E. Renteria & Alejandro Arias-Vasquez & Sylvane Desrivières & Neda Jahanshad & Roberto Toro & Katharina Wittfeld & Lucija Abramovic & Micael Andersson & Benja, 2015. "Common genetic variants influence human subcortical brain structures," Nature, Nature, vol. 520(7546), pages 224-229, April.
    8. Francesco C. Stingo & Michele Guindani & Marina Vannucci & Vince D. Calhoun, 2013. "An Integrative Bayesian Modeling Approach to Imaging Genetics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 876-891, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisabeth Waldmann & Thomas Kneib & Yu Ryan Yu & Stefan Lang, 2012. "Bayesian semiparametric additive quantile regression," Working Papers 2012-06, Faculty of Economics and Statistics, Universität Innsbruck.
    2. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Nie Yunlong & Opoku Eugene & Yasmin Laila & Song Yin & Wang Jie & Wu Sidi & Scarapicchia Vanessa & Gawryluk Jodie & Wang Liangliang & Cao Jiguo & Nathoo Farouk S., 2020. "Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(3), pages 1-18, June.
    4. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    5. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
    6. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    7. F. S. Nathoo & A. Babul & A. Moiseev & N. Virji-Babul & M. F. Beg, 2014. "A variational Bayes spatiotemporal model for electromagnetic brain mapping," Biometrics, The International Biometric Society, vol. 70(1), pages 132-143, March.
    8. Goh, Gyuhyeong & Dey, Dipak K. & Chen, Kun, 2017. "Bayesian sparse reduced rank multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 14-28.
    9. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Variational inference for large Bayesian vector autoregressions," Papers 2202.12644, arXiv.org, revised Jun 2023.
    10. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    11. Anne Musson & Damien Rousselière, 2020. "Exploring the effect of crisis on cooperatives: a Bayesian performance analysis of French craftsmen cooperatives," Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2657-2678, May.
    12. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    14. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    15. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    16. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    17. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    18. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    19. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    20. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:742-753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.