IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i7-8p670-677.html
   My bibliography  Save this article

Compatibility of conditionally specified models

Author

Listed:
  • Chen, Hua Yun

Abstract

A conditionally specified joint model is convenient to use in fields such as spatial data modeling, Gibbs sampling, and missing data imputation. One potential problem with such an approach is that the conditionally specified models may be incompatible, which can lead to serious problems in applications. We propose an odds ratio representation of a joint density to study the issue and derive conditions under which conditionally specified distributions are compatible and yield a joint distribution. Our conditions are the simplest to verify compared with those proposed in the literature. The proposal also explicitly constructs joint densities that are fully compatible with the conditionally specified densities when the conditional densities are compatible, and partially compatible with the conditional densities when they are incompatible. The construction result is then applied to checking the compatibility of the conditionally specified models. Ways to modify the conditionally specified models based on the construction of the joint models are also discussed when the conditionally specified models are incompatible.

Suggested Citation

  • Chen, Hua Yun, 2010. "Compatibility of conditionally specified models," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 670-677, April.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:670-677
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00483-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua Yun Chen, 2004. "Nonparametric and Semiparametric Models for Missing Covariates in Parametric Regression," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1176-1189, December.
    2. Hua Yun Chen, 2007. "A Semiparametric Odds Ratio Model for Measuring Association," Biometrics, The International Biometric Society, vol. 63(2), pages 413-421, June.
    3. Arnold, Barry C. & Gokhale, D. V., 1994. "On uniform marginal representation of contingency tables," Statistics & Probability Letters, Elsevier, vol. 21(4), pages 311-316, November.
    4. Hua Yun Chen, 2003. "A note on the prospective analysis of outcome‐dependent samples," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 575-584, May.
    5. Yuchung J. Wang & Edward H. Ip, 2008. "Conditionally specified continuous distributions," Biometrika, Biometrika Trust, vol. 95(3), pages 735-746.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuo, Kun-Lin & Song, Chwan-Chin & Jiang, Thomas J., 2017. "Exactly and almost compatible joint distributions for high-dimensional discrete conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 115-123.
    2. Hua Yun Chen & Daniel E. Rader & Mingyao Li, 2015. "Likelihood Inferences on Semiparametric Odds Ratio Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1125-1135, September.
    3. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    4. Dreassi, Emanuela & Rigo, Pietro, 2017. "A note on compatibility of conditional autoregressive models," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 9-16.
    5. Linda Khachatryan & Boris S. Nahapetian, 2023. "On the Characterization of a Finite Random Field by Conditional Distribution and its Gibbs Form," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1743-1761, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Yun Chen & Hui Xie & Yi Qian, 2011. "Multiple Imputation for Missing Values through Conditional Semiparametric Odds Ratio Models," Biometrics, The International Biometric Society, vol. 67(3), pages 799-809, September.
    2. Hua Yun Chen & Daniel E. Rader & Mingyao Li, 2015. "Likelihood Inferences on Semiparametric Odds Ratio Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1125-1135, September.
    3. Yilin Li & Wang Miao & Ilya Shpitser & Eric J. Tchetgen Tchetgen, 2023. "A self‐censoring model for multivariate nonignorable nonmonotone missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3203-3214, December.
    4. Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
    5. Hua Yun Chen, 2007. "A Semiparametric Odds Ratio Model for Measuring Association," Biometrics, The International Biometric Society, vol. 63(2), pages 413-421, June.
    6. Yi Qian & Hui Xie, 2015. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," Management Science, INFORMS, vol. 61(3), pages 520-541, March.
    7. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    8. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    9. Amanda Coston & Edward H. Kennedy, 2022. "The role of the geometric mean in case-control studies," Papers 2207.09016, arXiv.org.
    10. Yi Qian & Hui Xie, 2014. "Which Brand Purchasers Are Lost to Counterfeiters? An Application of New Data Fusion Approaches," Marketing Science, INFORMS, vol. 33(3), pages 437-448, May.
    11. Belitskaya-Levy Ilana & Shao Yongzhao & Goldberg Judith D, 2008. "Systematic Missing-At-Random (SMAR) Design and Analysis for Translational Research Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-28, July.
    12. Yi Qian & Hui Xie, 2022. "Simplifying Bias Correction for Selective Sampling: A Unified Distribution-Free Approach to Handling Endogenously Selected Samples," Marketing Science, INFORMS, vol. 41(2), pages 336-360, March.
    13. Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei, 2011. "Nonparametric estimation of the log odds ratio for sparse data by kernel smoothing," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1802-1807.
    14. Zhiwei Zhang & Howard Rockette, 2006. "Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 687-706, December.
    15. Hua Yun Chen, 2009. "Estimation and Inference Based on Neumann Series Approximation to Locally Efficient Score in Missing Data Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 713-734, December.
    16. Jonathan S. Schildcrout & Shawn P. Garbett & Patrick J. Heagerty, 2013. "Outcome Vector Dependent Sampling with Longitudinal Continuous Response Data: Stratified Sampling Based on Summary Statistics," Biometrics, The International Biometric Society, vol. 69(2), pages 405-416, June.
    17. Sung Jae Jun & Sokbae (Simon) Lee, 2020. "Causal inference in case-control studies," CeMMAP working papers CWP19/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Yi Qian & Hui Xie, 2011. "No Customer Left Behind: A Distribution-Free Bayesian Approach to Accounting for Missing Xs in Marketing Models," Marketing Science, INFORMS, vol. 30(4), pages 717-736, July.
    19. Zhonghua Liu & Ting Ye & Baoluo Sun & Mary Schooling & Eric Tchetgen Tchetgen, 2023. "Mendelian randomization mixed‐scale treatment effect robust identification and estimation for causal inference," Biometrics, The International Biometric Society, vol. 79(3), pages 2208-2219, September.
    20. Timothy Reese & Majid Mojirsheibani, 2017. "On the $$L_p$$ L p norms of kernel regression estimators for incomplete data with applications to classification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 81-112, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:670-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.