IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i7-8p639-647.html
   My bibliography  Save this article

The AU algorithm for estimating equations in the presence of missing data

Author

Listed:
  • Zhao, Huixiu
  • Ma, Wen-Qing
  • Guo, Jianhua

Abstract

This paper is concerned with situations in which estimating equations involve missing data and the full likelihood may not be available. We present an iterative algorithm for solving estimating equations in the presence of missing data. An application is made to a real data set from a reproductive toxicity study. Simulation results show that our method is valid and outperforms the complete-case analysis which ignores the subjects with missing data.

Suggested Citation

  • Zhao, Huixiu & Ma, Wen-Qing & Guo, Jianhua, 2010. "The AU algorithm for estimating equations in the presence of missing data," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 639-647, April.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:639-647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00479-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    2. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    3. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    4. Liu, Li & Xiang, Liming, 2019. "Missing covariate data in generalized linear mixed models with distribution-free random effects," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 1-16.
    5. Steele, Fiona & Clarke, Paul & Kuha, Jouni, 2019. "Modeling within-household associations in household panel studies," LSE Research Online Documents on Economics 88162, London School of Economics and Political Science, LSE Library.
    6. Wu, Billy & Yao, Qiwei & Zhu, Shiwu, 2013. "Estimation in the presence of many nuisance parameters: Composite likelihood and plug-in likelihood," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2877-2898.
    7. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    8. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    9. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    10. de Leon, A.R., 2005. "Pairwise likelihood approach to grouped continuous model and its extension," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 49-57, November.
    11. Molin Wang & John M. Williamson, 2005. "Generalization of the Mantel–Haenszel Estimating Function for Sparse Clustered Binary Data," Biometrics, The International Biometric Society, vol. 61(4), pages 973-981, December.
    12. Hui-Xiu Zhao & Jin-Guan Lin, 2013. "An approximately optimal non-parametric procedure for analyzing exchangeable binary data with random cluster sizes," Computational Statistics, Springer, vol. 28(5), pages 2029-2047, October.
    13. Büscher, Sebastian & Bauer, Dietmar, 2024. "Weighting strategies for pairwise composite marginal likelihood estimation in case of unbalanced panels and unaccounted autoregressive structure of the errors," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    14. Paleti, Rajesh & Bhat, Chandra R., 2013. "The composite marginal likelihood (CML) estimation of panel ordered-response models," Journal of choice modelling, Elsevier, vol. 7(C), pages 24-43.
    15. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    16. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    17. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    18. Yinshan Zhao & Harry Joe, 2008. "Inferences for odds ratio with dependent pairs," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 101-119, May.
    19. Li Liu & Liming Xiang, 2014. "Semiparametric estimation in generalized linear mixed models with auxiliary covariates: A pairwise likelihood approach," Biometrics, The International Biometric Society, vol. 70(4), pages 910-919, December.
    20. Wu, Billy & Yao, Qiwei & Zhu, Shiwu, 2013. "Estimation in the presence of many nuisance parameters: composite likelihood and plug-in likelihood," LSE Research Online Documents on Economics 50043, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:639-647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.