IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i7-8p621-630.html
   My bibliography  Save this article

Doubly robust semiparametric estimation for the missing censoring indicator model

Author

Listed:
  • Subramanian, Sundarraman
  • Bandyopadhyay, Dipankar

Abstract

We present a semiparametric analysis of an augmented inverse probability of non-missingness weighted (AIPW) estimator of a survival function for the missing censoring indicator model. Although the estimator is asymptotically less efficient than a Dikta semiparametric estimator, its advantage is the insulation that it offers against inconsistency due to misspecification. We present theoretical and numerical comparisons of the asymptotic variances when there is no misspecification. In addition, we derive the asymptotic variance of the AIPW estimator when there is partial misspecification. We also present a numerical robustness study that confirms the superiority of the AIPW estimator when there is misspecification.

Suggested Citation

  • Subramanian, Sundarraman & Bandyopadhyay, Dipankar, 2010. "Doubly robust semiparametric estimation for the missing censoring indicator model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 621-630, April.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:621-630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00477-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaifeng Lu & Anastasios A. Tsiatis, 2001. "Multiple Imputation Methods for Estimating Regression Coefficients in the Competing Risks Model with Missing Cause of Failure," Biometrics, The International Biometric Society, vol. 57(4), pages 1191-1197, December.
    2. Dikta, Gerhard & Kvesic, Marsel & Schmidt, Christian, 2006. "Bootstrap Approximations in Model Checks for Binary Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 521-530, June.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    4. Satten, Glen A. & Datta, Somnath & Robins, James, 2001. "Estimating the marginal survival function in the presence of time dependent covariates," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 397-403, October.
    5. Subramanian, Sundarraman, 2009. "The multiple imputations based Kaplan-Meier estimator," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1906-1914, September.
    6. Subramanian, Sundarraman & Bandyopadhyay, Dipankar, 2008. "Semiparametric left truncation and right censorship models with missing censoring indicators," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2572-2577, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Zhiping & Chen, Xiaoping & Zhou, Yong, 2015. "A kernel-assisted imputation estimating method for the additive hazards model with missing censoring indicator," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 89-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subramanian, Sundarraman, 2009. "The multiple imputations based Kaplan-Meier estimator," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1906-1914, September.
    2. Xiaolin Chen & Jianwen Cai, 2018. "Reweighted estimators for additive hazard model with censoring indicators missing at random," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 224-249, April.
    3. Richard J. Cook & Jerald F. Lawless, 2020. "Failure time studies with intermittent observation and losses to follow‐up," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1035-1063, December.
    4. Subramanian, Sundarraman, 2011. "Multiple imputations and the missing censoring indicator model," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 105-117, January.
    5. Bhattacharya, Rianka & Subramanian, Sundarraman, 2014. "Two-sample location–scale estimation from semiparametric random censorship models," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 25-38.
    6. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    7. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    8. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    9. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    10. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    11. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    12. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    13. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    14. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    15. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    16. Topi Miettinen & Sigrid Suetens, 2008. "Communication and Guilt in a Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 52(6), pages 945-960, December.
    17. Towfiqul Islam Khan & Mashfique Ibne Akbar, 2015. "Illicit Financial Flow in view of Financing the Post-2015 Development Agenda," Southern Voice Occasional Paper 25, Southern Voice.
    18. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    19. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.
    20. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:621-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.