IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v132y2014icp25-38.html
   My bibliography  Save this article

Two-sample location–scale estimation from semiparametric random censorship models

Author

Listed:
  • Bhattacharya, Rianka
  • Subramanian, Sundarraman

Abstract

When two survival functions belong to a location–scale family of distributions, and the available two-sample data are each right censored, the location and scale parameters can be estimated using a minimum distance criterion combined with Kaplan–Meier quantiles. In this paper, it is shown that using the estimated quantiles from a semiparametric random censorship framework produces improved parameter estimates. The semiparametric framework was originally proposed for the one-sample case (Dikta, 1998), and uses a model for the conditional probability that an observation is uncensored given the observed minimum. The extension to the two-sample setting assumes the availability of good fitting models for the group-specific conditional probabilities. When the models are correctly specified for each group, the new location and scale estimators are shown to be asymptotically as or more efficient than the estimators obtained using the Kaplan–Meier based quantiles. Individual and joint confidence intervals for the parameters are developed. Simulation studies show that the proposed method produces confidence intervals that have correct empirical coverage and that are more informative. The proposed method is illustrated using two real data sets.

Suggested Citation

  • Bhattacharya, Rianka & Subramanian, Sundarraman, 2014. "Two-sample location–scale estimation from semiparametric random censorship models," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 25-38.
  • Handle: RePEc:eee:jmvana:v:132:y:2014:i:c:p:25-38
    DOI: 10.1016/j.jmva.2014.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Subramanian, Sundarraman, 2009. "The multiple imputations based Kaplan-Meier estimator," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1906-1914, September.
    2. Potgieter, C.J. & Lombard, F., 2012. "Nonparametric estimation of location and scale parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4327-4337.
    3. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, September.
    4. Subramanian, Sundarraman, 2012. "Model-based likelihood ratio confidence intervals for survival functions," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 626-635.
    5. Dikta, Gerhard & Kvesic, Marsel & Schmidt, Christian, 2006. "Bootstrap Approximations in Model Checks for Binary Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 521-530, June.
    6. Dikta, Gerhard, 2014. "Asymptotically efficient estimation under semi-parametric random censorship models," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 10-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nubyra Ahmed & Sundarraman Subramanian, 2016. "Semiparametric simultaneous confidence bands for the difference of survival functions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 504-530, October.
    2. Sundarraman Subramanian, 2020. "Function-based hypothesis testing in censored two-sample location-scale models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 183-213, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subramanian, Sundarraman, 2016. "Bootstrap likelihood ratio confidence bands for survival functions under random censorship and its semiparametric extension," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 58-81.
    2. Nubyra Ahmed & Sundarraman Subramanian, 2016. "Semiparametric simultaneous confidence bands for the difference of survival functions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 504-530, October.
    3. Shoubhik Mondal & Sundarraman Subramanian, 2016. "Simultaneous confidence bands for Cox regression from semiparametric random censorship," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 122-144, January.
    4. Dikta, Gerhard & Reißel, Martin & Harlaß, Carsten, 2016. "Semi-parametric survival function estimators deduced from an identifying Volterra type integral equation," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 273-284.
    5. Subramanian, Sundarraman & Bandyopadhyay, Dipankar, 2010. "Doubly robust semiparametric estimation for the missing censoring indicator model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 621-630, April.
    6. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    7. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    8. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    9. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    10. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    11. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    12. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
    13. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    15. Schomaker Michael & Heumann Christian, 2011. "Model Averaging in Factor Analysis: An Analysis of Olympic Decathlon Data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(1), pages 1-15, January.
    16. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    17. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
    18. José Manuel Cordero Ferrera & Manuel Muñiz Pérez & Rosa Simancas Rodríguez, 2015. "The influence of socioeconomic factors on cognitive and non-cognitive educational outcomes," Investigaciones de Economía de la Educación volume 10, in: Marta Rahona López & Jennifer Graves (ed.), Investigaciones de Economía de la Educación 10, edition 1, volume 10, chapter 21, pages 413-438, Asociación de Economía de la Educación.
    19. Satoshi Hattori & Masayuki Henmi, 2014. "Stratified doubly robust estimators for the average causal effect," Biometrics, The International Biometric Society, vol. 70(2), pages 270-277, June.
    20. Naoya Sueishi & Arihiro Yoshimura, 2017. "Focused Information Criterion for Series Estimation in Partially Linear Models," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 352-363, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:132:y:2014:i:c:p:25-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.