IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i5-6p357-360.html
   My bibliography  Save this article

The Pickands representation of survival Marshall-Olkin copulas

Author

Listed:
  • Mai, Jan-Frederik
  • Scherer, Matthias

Abstract

The Pickands representation of an arbitrary survival Marshall-Olkin copula is computed. In dimension d>=2, the corresponding dependence measure is discrete with support consisting of 2d-1 atoms on the d-dimensional unit simplex.

Suggested Citation

  • Mai, Jan-Frederik & Scherer, Matthias, 2010. "The Pickands representation of survival Marshall-Olkin copulas," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 357-360, March.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:5-6:p:357-360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00434-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mai, Jan-Frederik & Scherer, Matthias, 2009. "Lévy-frailty copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1567-1585, August.
    2. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhua Lin & Xiaohu Li, 2014. "Multivariate Generalized Marshall–Olkin Distributions and Copulas," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 53-78, March.
    2. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    2. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    3. Nadarajah, Saralees, 2015. "Expansions for bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 77-84.
    4. Arnold Polanski & Evarist Stoja & Ching‐Wai (Jeremy) Chiu, 2021. "Tail risk interdependence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5499-5511, October.
    5. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    6. Sabrina Mulinacci, 2017. "A systemic shock model for too big to fail financial institutions," Papers 1704.02160, arXiv.org, revised Apr 2017.
    7. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    8. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    9. Mai Jan-Frederik, 2020. "The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay," Dependence Modeling, De Gruyter, vol. 8(1), pages 210-220, January.
    10. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    11. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    12. Baglioni, Angelo & Cherubini, Umberto, 2013. "Within and between systemic country risk. Theory and evidence from the sovereign crisis in Europe," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1581-1597.
    13. Polanski, Arnold & Stoja, Evarist, 2016. "Extreme risk interdependence," ESRB Working Paper Series 12, European Systemic Risk Board.
    14. Umberto Cherubini & Sabrina Mulinacci, 2015. "Systemic Risk with Exchangeable Contagion: Application to the European Banking System," Papers 1502.01918, arXiv.org.
    15. Mai Jan-Frederik, 2014. "A note on the Galambos copula and its associated Bernstein function," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, March.
    16. Umberto Cherubini & Sabrina Mulinacci, 2021. "Hierarchical Archimedean Dependence in Common Shock Models," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 143-163, March.
    17. Hering, Christian & Hofert, Marius & Mai, Jan-Frederik & Scherer, Matthias, 2010. "Constructing hierarchical Archimedean copulas with Lévy subordinators," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1428-1433, July.
    18. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    19. Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:5-6:p:357-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.