An asymptotic approximation for EPMC in linear discriminant analysis based on two-step monotone missing samples
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fujikoshi, Yasunori, 2000. "Error Bounds for Asymptotic Approximations of the Linear Discriminant Function When the Sample Sizes and Dimensionality are Large," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 1-17, April.
- Yu, Jianqi & Krishnamoorthy, K. & Pannala, Maruthy K., 2006. "Two-sample inference for normal mean vectors based on monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2162-2176, November.
- Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
- Chang, Wan-Ying & Richards, Donald St. P., 2010. "Finite-sample inference with monotone incomplete multivariate normal data, II," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 603-620, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
- Tatjana Pavlenko & Anuradha Roy, 2013. "Supervised classifiers of ultra high-dimensional higher-order data with locally doubly exchangeable covariance structure," Working Papers 0185mss, College of Business, University of Texas at San Antonio.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tsukada, Shin-ichi, 2024. "Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Kubokawa, Tatsuya & Hyodo, Masashi & Srivastava, Muni S., 2013. "Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 496-515.
- Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
- Krishnamoorthy, K., 2013. "Comparison of confidence intervals for correlation coefficients based on incomplete monotone samples and those based on listwise deletion," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 378-388.
- Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
- K. Krishnamoorthy, 1991. "Estimation of a common multivariate normal mean vector," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(4), pages 761-771, December.
- Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
- Tu, Jun & Zhou, Guofu, 2011.
"Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies,"
Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
- Jun Tu & Guofu Zhou, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," CEMA Working Papers 715, China Economics and Management Academy, Central University of Finance and Economics.
- Chang, Ching-Hui & Pal, Nabendu, 2008. "Testing on the common mean of several normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 321-333, December.
- Tsukuma, Hisayuki, 2010. "Shrinkage priors for Bayesian estimation of the mean matrix in an elliptically contoured distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1483-1492, July.
- Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
- Tsukada, Shin-ichi, 2014. "Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 183-196.
- Li, Run-Ze & Fang, Kai-Tai, 1995. "Estimation of scale matrix of elliptically contoured matrix distributions," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 289-297, September.
- Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 327-342, April.
- Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Sun, Xiaoqian & Zhou, Xian, 2008. "Improved minimax estimation of the bivariate normal precision matrix under the squared loss," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 127-134, February.
- Fourdrinier, Dominique & Strawderman, William E. & Wells, Martin T., 2003. "Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 24-39, April.
- Keiji Takai & Kenichi Hayashi, 2023. "Model Selection with Missing Data Embedded in Missing-at-Random Data," Stats, MDPI, vol. 6(2), pages 1-11, April.
- Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
- Hyodo, Masashi & Kubokawa, Tatsuya, 2014. "A variable selection criterion for linear discriminant rule and its optimality in high dimensional and large sample data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 364-379.
More about this item
Keywords
Linear discriminant analysis Expected probability of misclassification Asymptotic approximation Monotone missing samples;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:2:p:252-263. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.