IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v114y2013icp389-401.html
   My bibliography  Save this article

Asymptotic properties of canonical correlation analysis for one group with additional observations

Author

Listed:
  • Yamada, Tomoya

Abstract

We develop canonical correlation analysis in the context of two-step monotone incomplete data drawn from Np+q(μ,Σ), a multivariate normal population with mean μ and covariance matrix Σ. Our data consist of n observations on each group and an additional N−n observations on only one group, where all observations are mutually independent. We perform the canonical correlation analysis using the maximum likelihood estimators, with the monotone incomplete data, of μ and Σ. Further, we derive the asymptotic expansion of the distributions of the canonical correlations and the limiting distributions of the canonical vectors, and we compare them with the results of a typical canonical correlation.

Suggested Citation

  • Yamada, Tomoya, 2013. "Asymptotic properties of canonical correlation analysis for one group with additional observations," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 389-401.
  • Handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:389-401
    DOI: 10.1016/j.jmva.2012.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sugiura, Nariaki, 1976. "Asymptotic expansions of the distributions of the latent roots and the latent vector of the Wishart and multivariate F matrices," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 500-525, December.
    2. Eaton, M. L. & Tyler, D., 1994. "The Asymptotic Distribution of Singular-Values with Applications to Canonical Correlations and Correspondence Analysis," Journal of Multivariate Analysis, Elsevier, vol. 50(2), pages 238-264, August.
    3. Fujikoshi, Y., 1978. "Asymptotic expansions for the distributions of some functions of the latent roots of matrices in three situations," Journal of Multivariate Analysis, Elsevier, vol. 8(1), pages 63-72, March.
    4. Chang, Wan-Ying & Richards, Donald St. P., 2010. "Finite-sample inference with monotone incomplete multivariate normal data, II," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 603-620, March.
    5. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    6. Fang, C. & Krishnaiah, P. R., 1982. "Asymptotic distributions of functions of the eigenvalues of some random matrices for nonnormal populations," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 39-63, March.
    7. Boik, Robert J., 1998. "A Local Parameterization of Orthogonal and Semi-Orthogonal Matrices with Applications," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 244-276, November.
    8. Anderson, T. W., 1999. "Asymptotic Theory for Canonical Correlation Analysis," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 1-29, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
    2. Tomoya Yamada & Megan Romer & Donald Richards, 2015. "Kurtosis tests for multivariate normality with monotone incomplete data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 532-557, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haruhiko Ogasawara, 2009. "Asymptotic expansions in the singular value decomposition for cross covariance and correlation under nonnormality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 995-1017, December.
    2. Ogasawara, Haruhiko, 2007. "Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1726-1750, October.
    3. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    4. An, Baiguo & Guo, Jianhua & Wang, Hansheng, 2013. "Multivariate regression shrinkage and selection by canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 93-107.
    5. Langworthy, Benjamin W. & Stephens, Rebecca L. & Gilmore, John H. & Fine, Jason P., 2021. "Canonical correlation analysis for elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    6. Boik, Robert J., 1998. "A Local Parameterization of Orthogonal and Semi-Orthogonal Matrices with Applications," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 244-276, November.
    7. Jorge G. Adrover & Stella M. Donato, 2023. "Aspects of robust canonical correlation analysis, principal components and association," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 623-650, June.
    8. Bura, Efstathia & Cook, R. Dennis, 2003. "Rank estimation in reduced-rank regression," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 159-176, October.
    9. Boik, Robert J., 2005. "Second-order accurate inference on eigenvalues of covariance and correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 136-171, September.
    10. Gilbert, Scott & Zemcík, Petr, 2006. "Who's afraid of reduced-rank parameterizations of multivariate models? Theory and example," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 925-945, April.
    11. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    12. Charles Lindsey & Simon Sheather & Joseph McKean, 2014. "Using sliced mean variance–covariance inverse regression for classification and dimension reduction," Computational Statistics, Springer, vol. 29(3), pages 769-798, June.
    13. Masanobu Taniguchi & Madan Puri, 1995. "Higher order asymptotic theory for normalizing transformations of maximum likelihood estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 581-600, September.
    14. Christian Gourieroux & Joann Jasiak, 2023. "Generalized Covariance Estimator," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1315-1327, October.
    15. Marco Centoni & Gianluca Cubadda, 2011. "Modelling comovements of economic time series: a selective survey," Statistica, Department of Statistics, University of Bologna, vol. 71(2), pages 267-294.
    16. Tsukada, Shin-ichi, 2024. "Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    17. Tsukada, Shin-ichi, 2014. "Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 183-196.
    18. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.
    19. Robert Boik, 2008. "Newton Algorithms for Analytic Rotation: an Implicit Function Approach," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 231-259, June.
    20. Joann Jasiak & Aryan Manafi Neyazi, 2023. "GCov-Based Portmanteau Test," Papers 2312.05373, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:389-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.