IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p1167-1176.html
   My bibliography  Save this article

Approximate cost-efficient sequential designs for binary response models with application to switching measurements

Author

Listed:
  • Karvanen, Juha

Abstract

The efficiency of an experimental design is ultimately measured in terms of time and resources needed for the experiment. Optimal sequential (multi-stage) design is studied in the situation where each stage involves a fixed cost. The problem is motivated by switching measurements on superconducting Josephson junctions. In this quantum mechanical experiment, the sequences of current pulses are applied to the Josephson junction sample and a binary response indicating the presence or the absence of a voltage response is measured. The binary response can be modeled by a generalized linear model with the complementary log-log link function. The other models considered are the logit model and the probit model. For these three models, the approximately optimal sample size for the next stage as a function of the current Fisher information and the stage cost is determined. The cost-efficiency of the proposed design is demonstrated in simulations based on real data from switching measurements. The results can be directly applied to switching measurements and they may lead to substantial savings in the time needed for the experiment.

Suggested Citation

  • Karvanen, Juha, 2009. "Approximate cost-efficient sequential designs for binary response models with application to switching measurements," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1167-1176, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1167-1176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00487-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juha Karvanen & Juha J. Vartiainen & Andrey Timofeev & Jukka Pekola, 2007. "Experimental designs for binary data in switching measurements on superconducting Josephson junctions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(2), pages 167-181, March.
    2. Dorta-Guerra, Roberto & González-Dávila, Enrique & Ginebra, Josep, 2008. "Two-level experiments for binary response data," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 196-208, September.
    3. Biedermann, Stefanie & Dette, Holger & Zhu, Wei, 2006. "Optimal Designs for DoseResponse Models With Restricted Design Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 747-759, June.
    4. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    5. Dror, Hovav A. & Steinberg, David M., 2008. "Sequential Experimental Designs for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 288-298, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth L. C. Merrall & Mandeep K. Dhami & Sheila M. Bird, 2010. "Exploring Methods to Investigate Sentencing Decisions," Evaluation Review, , vol. 34(3), pages 185-219, June.
    2. Belmiro P. M. Duarte & Guillaume Sagnol, 2020. "Approximate and exact optimal designs for $$2^k$$ 2 k factorial experiments for generalized linear models via second order cone programming," Statistical Papers, Springer, vol. 61(6), pages 2737-2767, December.
    3. Dorta-Guerra, Roberto & González-Dávila, Enrique & Ginebra, Josep, 2008. "Two-level experiments for binary response data," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 196-208, September.
    4. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    5. H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
    6. Wiens, Douglas P., 2010. "Robustness of design for the testing of lack of fit and for estimation in binary response models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3371-3378, December.
    7. Ueckert, Sebastian & Mentré, France, 2017. "A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 203-219.
    8. Niaparast, Mehrdad, 2009. "On optimal design for a Poisson regression model with random intercept," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 741-747, March.
    9. Merton S. Krause, 2018. "Associational versus correlational research study design and data analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2691-2707, November.
    10. Dette, Holger & Holland-Letz, Tim, 2008. "A geometric characterization of c-optimal designs for heteroscedastic regression," Technical Reports 2008,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Fritjof Freise & Norbert Gaffke & Rainer Schwabe, 2024. "A p-step-ahead sequential adaptive algorithm for D-optimal nonlinear regression design," Statistical Papers, Springer, vol. 65(5), pages 2811-2834, July.
    12. Sheng Wu & Weng Kee Wong & Catherine M. Crespi, 2017. "Maximin optimal designs for cluster randomized trials," Biometrics, The International Biometric Society, vol. 73(3), pages 916-926, September.
    13. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    14. Nancy Flournoy & José Moler & Fernando Plo, 2020. "Performance Measures in Dose‐Finding Experiments," International Statistical Review, International Statistical Institute, vol. 88(3), pages 728-751, December.
    15. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    16. Hong-Yan Jiang & Rong-Xian Yue, 2019. "Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors," Computational Statistics, Springer, vol. 34(1), pages 71-87, March.
    17. Jóźwiak, Katarzyna & Moerbeek, Mirjam, 2012. "Cost-effective designs for trials with discrete-time survival endpoints," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2086-2096.
    18. Maryam Safarkhani & Mirjam Moerbeek, 2016. "D-optimal designs for a continuous predictor in longitudinal trials with discrete-time survival endpoints," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 146-171, May.
    19. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2021. "Optimal designs for discrete-time survival models with random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 300-332, April.
    20. repec:jss:jstsof:35:i06 is not listed on IDEAS
    21. Steven B Kim & Dong Sub Kim & Christina Magana-Ramirez, 2021. "Applications of statistical experimental designs to improve statistical inference in weed management," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1167-1176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.