IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v91y2004i2p282-304.html
   My bibliography  Save this article

Local influence in multilevel regression for growth curves

Author

Listed:
  • Shi, Lei
  • Ojeda, Mario Miguel

Abstract

Influence analysis is important in modelling and identification of special patterns in the data. It is well established in ordinary regression. However, analogous diagnostics are generally not available for the multilevel regression model, in which estimation involves a complex iterative algorithm. This paper studies the local influence of small perturbations on the parameter estimates in the multilevel regression model with application to growth curves. The estimation is based on the iterative generalized least-squares (IGLS) method suggested by Goldstein (Biometrika 73 (1986) 43). The generalized influence function and generalized Cook statistic (Biometrika 84(1) (1997) 175) of IGLS of unknown parameters under some specific simultaneous perturbations are derived to study the joint influence of subject units on parameter estimators. The perturbation scheme is introduced through a variance-covariance matrix of error variables. A one-step approximation formula is suggested for simplifying the computations. The method is examined on growth-curve data.

Suggested Citation

  • Shi, Lei & Ojeda, Mario Miguel, 2004. "Local influence in multilevel regression for growth curves," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 282-304, November.
  • Handle: RePEc:eee:jmvana:v:91:y:2004:i:2:p:282-304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00144-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. S. Hodges, 1998. "Some algebra and geometry for hierarchical models, applied to diagnostics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 497-536.
    2. Shi, Lei & Wang, Xueren, 1999. "Local influence in ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 341-353, September.
    3. Goldstein, Harvey & Rasbash, Jon, 1992. "Efficient computational procedures for the estimation of parameters in multilevel models based on iterative generalised least squares," Computational Statistics & Data Analysis, Elsevier, vol. 13(1), pages 63-71, January.
    4. Jacob (Yaacov) Weisberg & Noah M. Meltz, 1999. "Education and Unemployment in Israel, 1976-1994: Reducing the Anomaly," Working Papers nmeltz-99-01, University of Toronto, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Lei & Chen, Gemai, 2008. "Case deletion diagnostics in multilevel models," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1860-1877, October.
    2. Lei Shi & Md. Mostafizur Rahman & Wen Gan & Jianhua Zhao, 2015. "Stepwise local influence in generalized autoregressive conditional heteroskedasticity models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 428-444, February.
    3. Shi, Lei & Huang, Mei, 2011. "Stepwise local influence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 973-982, February.
    4. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    5. Jun Lu & Wen Gan & Lei Shi, 2022. "Local influence analysis for GMM estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    2. Shi, Lei & Chen, Gemai, 2012. "Deletion, replacement and mean-shift for diagnostics in linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 202-208, January.
    3. Andrew Gelman & Iain Pardoe, 2004. "Bayesian measures of explained variance and pooling in multilevel (hierarchical) models," EERI Research Paper Series EERI_RP_2004_04, Economics and Econometrics Research Institute (EERI), Brussels.
    4. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    5. Jahufer, Aboobacker & Jianbao, Chen, 2009. "Assessing global influential observations in modified ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 513-518, February.
    6. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    7. Liying Luo & James S. Hodges, 2016. "Block Constraints in Age–Period–Cohort Models with Unequal-width Intervals," Sociological Methods & Research, , vol. 45(4), pages 700-726, November.
    8. E. Andres Houseman & Louise Ryan & Brent Coull, 2004. "Cholesky Residuals for Assessing Normal Errors in a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1019, Berkeley Electronic Press.
    9. B. Arendacká & S. Puntanen, 2015. "Further remarks on the connection between fixed linear model and mixed linear model," Statistical Papers, Springer, vol. 56(4), pages 1235-1247, November.
    10. Jan R. Magnus & Andrey L. Vasnev, 2007. "Local sensitivity and diagnostic tests," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 166-192, March.
    11. Scrucca, Luca, 2001. "A review and computer code for assessing the structural dimension of a regression model: uncorrelated 2D views," Computational Statistics & Data Analysis, Elsevier, vol. 36(2), pages 163-177, April.
    12. Muammer Maral & Furkan Yildiz & Yusuf Alpaydin, 2021. "An Analysis of the Relationship between Higher Education Expenditures and Youth Unemployment in Turkey," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 8(2), pages 173-197, July.
    13. Lei Shi & Md. Mostafizur Rahman & Wen Gan & Jianhua Zhao, 2015. "Stepwise local influence in generalized autoregressive conditional heteroskedasticity models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 428-444, February.
    14. He, Yi & Hodges, James S., 2008. "Point estimates for variance-structure parameters in Bayesian analysis of hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2560-2577, January.
    15. James Bennett & Jon Wakefield, 2001. "Errors-in-Variables in Joint Population Pharmacokinetic/Pharmacodynamic Modeling," Biometrics, The International Biometric Society, vol. 57(3), pages 803-812, September.
    16. Hadi Emami & Mostafa Emami, 2016. "New influence diagnostics in ridge regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 476-489, March.
    17. Duarte Nubia E. & Giolo Suely R. & Pereira Alexandre C. & de Andrade Mariza & Soler Júlia P., 2014. "Using the theory of added-variable plot for linear mixed models to decompose genetic effects in family data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 359-378, June.
    18. Lisa Henn & James S. Hodges, 2014. "Multiple Local Maxima in Restricted Likelihoods and Posterior Distributions for Mixed Linear Models," International Statistical Review, International Statistical Institute, vol. 82(1), pages 90-105, April.
    19. Ahmed Bani-Mustafa & K. M. Matawie & C. F. Finch & Amjad Al-Nasser & Enrico Ciavolino, 2019. "Recursive residuals for linear mixed models," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1263-1274, May.
    20. Herrera Gómez, Marcos, 2008. "Una introducción al análisis multinivel: ¿La demanda individual de salud es afectada por el médico de cabecera? [An introduction to multilevel analysis: Is the individual demand for health is affec," MPRA Paper 35267, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:91:y:2004:i:2:p:282-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.