IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i3p476-489.html
   My bibliography  Save this article

New influence diagnostics in ridge regression

Author

Listed:
  • Hadi Emami
  • Mostafa Emami

Abstract

We occasionally find that a small subset of the data exerts a disproportionate influence on the fitted regression model. We would like to locate these influential points and assess their impact on the model. However, the existence of influential data is complicated by the presence of collinearity (see, e.g. [15]). In this article we develop a new influence statistic for one or a set of observations in linear regression dealing with collinearity. We show that this statistic has asymptotically normal distribution and is able to detect a subset of high ridge leverage outliers. Using this influence statistic we also show that when ridge regression is used to mitigate the effects of collinearity, the influence of some observations can be drastically modified. As an illustrative example, simulation studies and a real data set are analysed.

Suggested Citation

  • Hadi Emami & Mostafa Emami, 2016. "New influence diagnostics in ridge regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 476-489, March.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:3:p:476-489
    DOI: 10.1080/02664763.2015.1070804
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1070804
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1070804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan Ertas & Murat Erisoglu & Selahattin Kaciranlar, 2013. "Detecting influential observations in Liu and modified Liu estimators," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1735-1745, August.
    2. Jahufer, Aboobacker & Jianbao, Chen, 2009. "Assessing global influential observations in modified ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 513-518, February.
    3. Shi, Lei & Wang, Xueren, 1999. "Local influence in ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 341-353, September.
    4. Nedret Billor, 1999. "An application of the local influence approach to ridge regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(2), pages 177-183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    2. Aboobacker Jahufer & Jianbao Chen, 2012. "Identifying local influential observations in Liu estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(3), pages 425-438, April.
    3. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
    4. Jahufer, Aboobacker & Jianbao, Chen, 2009. "Assessing global influential observations in modified ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 513-518, February.
    5. Jan R. Magnus & Andrey L. Vasnev, 2007. "Local sensitivity and diagnostic tests," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 166-192, March.
    6. Lei Shi & Md. Mostafizur Rahman & Wen Gan & Jianhua Zhao, 2015. "Stepwise local influence in generalized autoregressive conditional heteroskedasticity models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 428-444, February.
    7. Carolina Marchant & Víctor Leiva & Francisco José A. Cysneiros & Juan F. Vivanco, 2016. "Diagnostics in multivariate generalized Birnbaum-Saunders regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2829-2849, November.
    8. Víctor Leiva & Shuangzhe Liu & Lei Shi & Francisco José A. Cysneiros, 2016. "Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 627-642, March.
    9. Vasnev, A.L., 2006. "Local sensitivity in econometrics," Other publications TiSEM 789cc7a5-57da-4c5c-b5af-2, Tilburg University, School of Economics and Management.
    10. Rasekh, A.R., 2006. "Local influence in measurement error models with ridge estimate," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2822-2834, June.
    11. M. Revan Özkale & Stanley Lemeshow & Rodney Sturdivant, 2018. "Logistic regression diagnostics in ridge regression," Computational Statistics, Springer, vol. 33(2), pages 563-593, June.
    12. Qingming Zou & Zhongyi Zhu & Jinglong Wang, 2009. "Local influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 905-918, December.
    13. T. Söküt Açar & M.R. Özkale, 2016. "Influence measures based on confidence ellipsoids in general linear regression model with correlated regressors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2791-2812, November.
    14. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    15. Shi, Lei & Ojeda, Mario Miguel, 2004. "Local influence in multilevel regression for growth curves," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 282-304, November.
    16. Yonghui Liu & Ruochen Sang & Shuangzhe Liu, 2017. "Diagnostic analysis for a vector autoregressive model under Student-super-′s t-distributions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(2), pages 86-114, May.
    17. Hernán Rubio & Luis Firinguetti, 2002. "The Distribution of Stochastic Shrinkage Parameters in Ridge Regression," Working Papers Central Bank of Chile 137, Central Bank of Chile.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:3:p:476-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.