IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i17p3029-3033.html
   My bibliography  Save this article

Nonparametric estimation of level sets under minimal assumptions

Author

Listed:
  • Ren, Qunshu
  • Mojirsheibani, Majid

Abstract

Baillo et al. [Baillo, A., Cuesta-Albertos, J.A., Cuevas, A., 2001. Convergence rates in nonparametric estimation of level sets. Statist. Probab. Lett. 53, 27-35] established L1-convergence results for nonparametric estimators of level sets, for i.i.d. sequences, under a highly technical assumption imposed on the underlying density function. In this article we establish the same results (with the same rates of convergence) without imposing such technical conditions. Furthermore, the i.i.d. assumption used in the cited paper will be relaxed to the one based on [alpha]-mixing sequences. We require no additional conditions to establish our results.

Suggested Citation

  • Ren, Qunshu & Mojirsheibani, Majid, 2008. "Nonparametric estimation of level sets under minimal assumptions," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3029-3033, December.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:17:p:3029-3033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00263-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baíllo, Amparo & Cuesta-Albertos, Juan A. & Cuevas, Antonio, 2001. "Convergence rates in nonparametric estimation of level sets," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 27-35, May.
    2. Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delicado, Pedro & Vieu, Philippe, 2015. "Optimal level sets for bivariate density representation," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    2. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," DES - Working Papers. Statistics and Econometrics. WS ws032806, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 411-417, December.
    4. Elena Di Bernardino & Thomas Laloë & Véronique Maume-Deschamps & Clémentine Prieur, 2013. "Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory," Post-Print hal-00580624, HAL.
    5. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    6. Moritz Herrmann & Fabian Scheipl, 2021. "A Geometric Perspective on Functional Outlier Detection," Stats, MDPI, vol. 4(4), pages 1-41, November.
    7. Pedro Delicado & Philippe Vieu, 2017. "Choosing the most relevant level sets for depicting a sample of densities," Computational Statistics, Springer, vol. 32(3), pages 1083-1113, September.
    8. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.
    9. Polonik, Wolfgang & Yao, Qiwei, 2002. "Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 234-255, February.
    10. Polonik, Wolfgang & Wang, Zailong, 2010. "PRIM analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 525-540, March.
    11. Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
    12. Elena Bernardino & Thomas Laloë & Rémi Servien, 2015. "Estimating covariate functions associated to multivariate risks: a level set approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 497-526, July.
    13. Delicado, Pedro & Vieu, Philippe, 2015. "Optimal level sets for bivariate density representation," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 1-18.
    14. Cholaquidis, Alejandro & Fraiman, Ricardo & Moreno, Leonardo, 2022. "Level set and density estimation on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Berthet, Philippe & Einmahl, John, 2020. "Cube Root Weak Convergence of Empirical Estimators of a Density Level Set," Discussion Paper 2020-015, Tilburg University, Center for Economic Research.
    16. Burman, Prabir & Polonik, Wolfgang, 2009. "Multivariate mode hunting: Data analytic tools with measures of significance," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1198-1218, July.
    17. Pavlides, Marios G. & Wellner, Jon A., 2012. "Nonparametric estimation of multivariate scale mixtures of uniform densities," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 71-89.
    18. Di, J. & Kolaczyk, E., 2010. "Complexity-penalized estimation of minimum volume sets for dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1910-1926, October.
    19. Daniel Hlubinka & Miroslav Šiman, 2015. "On generalized elliptical quantiles in the nonlinear quantile regression setup," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 249-264, June.
    20. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:17:p:3029-3033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.