IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i4d10.1007_s10463-021-00817-z.html
   My bibliography  Save this article

Simultaneous inference for Berkson errors-in-variables regression under fixed design

Author

Listed:
  • Katharina Proksch

    (University of Twente)

  • Nicolai Bissantz

    (Ruhr-Universität Bochum)

  • Hajo Holzmann

    (Philipps-Universität Marburg)

Abstract

In various applications of regression analysis, in addition to errors in the dependent observations also errors in the predictor variables play a substantial role and need to be incorporated in the statistical modeling process. In this paper we consider a nonparametric measurement error model of Berkson type with fixed design regressors and centered random errors, which is in contrast to much existing work in which the predictors are taken as random observations with random noise. Based on an estimator that takes the error in the predictor into account and on a suitable Gaussian approximation, we derive finite sample bounds on the coverage error of uniform confidence bands, where we circumvent the use of extreme-value theory and rather rely on recent results on anti-concentration of Gaussian processes. In a simulation study we investigate the performance of the uniform confidence sets for finite samples.

Suggested Citation

  • Katharina Proksch & Nicolai Bissantz & Hajo Holzmann, 2022. "Simultaneous inference for Berkson errors-in-variables regression under fixed design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 773-800, August.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:4:d:10.1007_s10463-021-00817-z
    DOI: 10.1007/s10463-021-00817-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00817-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00817-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meister, Alexander, 2010. "Nonparametric Berkson regression under normal measurement error and bounded design," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1179-1189, May.
    2. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    3. van Es, Bert & Gugushvili, Shota, 2008. "Weak convergence of the supremum distance for supersmooth kernel deconvolution," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2932-2938, December.
    4. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    5. Aurore Delaigle & Peter Hall & Farshid Jamshidi, 2015. "Confidence bands in non-parametric errors-in-variables regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 149-169, January.
    6. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
    7. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    8. Aurore Delaigle & Peter Hall & Peihua Qiu, 2006. "Nonparametric methods for solving the Berkson errors‐in‐variables problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 201-220, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    2. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    3. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    4. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    5. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    6. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    7. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    8. Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.
    9. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    10. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    11. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    12. Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2020. "Nonparametric regression estimate with Berkson Laplace measurement error," Statistics & Probability Letters, Elsevier, vol. 166(C).
    13. Yin, Zanhua & Gao, Wei & Tang, Man-Lai & Tian, Guo-Liang, 2013. "Estimation of nonparametric regression models with a mixture of Berkson and classical errors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1151-1162.
    14. Ma, Jun & Marmer, Vadim & Shneyerov, Artyom, 2019. "Inference for first-price auctions with Guerre, Perrigne, and Vuong’s estimator," Journal of Econometrics, Elsevier, vol. 211(2), pages 507-538.
    15. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    16. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    17. Adusumilli, Karun & Kurisu, Daisies & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," LSE Research Online Documents on Economics 102692, London School of Economics and Political Science, LSE Library.
    18. Meister, Alexander, 2010. "Nonparametric Berkson regression under normal measurement error and bounded design," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1179-1189, May.
    19. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.
    20. Marcus Groß, 2016. "Modeling body height in prehistory using a spatio-temporal Bayesian errors-in variables model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 289-311, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:4:d:10.1007_s10463-021-00817-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.