IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v39y1998i2p151-160.html
   My bibliography  Save this article

Simple kernel estimators for certain nonparametric deconvolution problems

Author

Listed:
  • van Es, A. J.
  • Kok, A. R.

Abstract

We consider deconvolution problems where the observations are equal in distribution to X = [lambda]1E1 + ... + [lambda]mEm + Y, or to X = [mu]1L1 + ... + [mu]mLm + Y. Here the random variables in the sums are independent, the Ei are exponentially distributed, the Li are Laplace distributed and Y has an unknown distribution F which we want to estimate. The constants [lambda]i and [mu]i are given. These problems include exponential, gamma and Laplace deconvolution. We derive inversion formulas, expressing F in terms of the distribution of the observations. Simple kernel estimators of F and its density f are then introduced by plugging in standard kernel estimators of the distribution of the observations. The pointwise asymptotic properties of the estimators are investigated.

Suggested Citation

  • van Es, A. J. & Kok, A. R., 1998. "Simple kernel estimators for certain nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 39(2), pages 151-160, August.
  • Handle: RePEc:eee:stapro:v:39:y:1998:i:2:p:151-160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00054-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, E., 1993. "Asymptotic Normality for Deconvolution Estimators of Multivariate Densities of Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 47-68, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    2. van Es, Bert & Gugushvili, Shota, 2008. "Weak convergence of the supremum distance for supersmooth kernel deconvolution," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2932-2938, December.
    3. Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marianna Pensky & Ahmed Zayed, 2002. "Density Deconvolution of Different Conditional Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 701-712, September.
    2. D.A. Ioannides & D.P. Papanastassiou, 2001. "Estimating the Distribution Function of a Stationary Process Involving Measurement Errors," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 181-198, May.
    3. Ming Yuan, 2003. "Deconvolving Multivariate Density from Random Field," Statistical Inference for Stochastic Processes, Springer, vol. 6(2), pages 135-153, May.
    4. Guo, Linruo & Song, Weixing & Shi, Jianhong, 2022. "Estimating multivariate density and its derivatives for mixed measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    5. Seçil Yalaz, 2019. "Multivariate partially linear regression in the presence of measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 123-135, March.
    6. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    7. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    8. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    9. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    10. Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.
    11. Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
    12. Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
    13. Christian Hesse, 1995. "Deconvolving a density from contaminated dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 645-663, December.
    14. Zu, Yang, 2015. "Nonparametric specification tests for stochastic volatility models based on volatility density," Journal of Econometrics, Elsevier, vol. 187(1), pages 323-344.
    15. Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.
    16. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    17. Ioannides, D. A. & Alevizos, P. D., 1997. "Nonparametric regression with errors in variables and applications," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 35-43, February.

    More about this item

    Keywords

    Deconvolution Kernel estimation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:39:y:1998:i:2:p:151-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.