IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200816.html
   My bibliography  Save this paper

Confidence bands for inverse regression models with application to gel electrophoresis

Author

Listed:
  • Birke, Melanie
  • Bissantz, Nicolai
  • Holzmann, Hajo

Abstract

We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two period functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 10711095] we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract.

Suggested Citation

  • Birke, Melanie & Bissantz, Nicolai & Holzmann, Hajo, 2008. "Confidence bands for inverse regression models with application to gel electrophoresis," Technical Reports 2008,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200816
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/36606/1/600371050.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Delaigle & I. Gijbels, 2002. "Estimation of integrated squared density derivatives from a contaminated sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 869-886, October.
    2. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Härdle, Wolfgang, 1989. "Asymptotic maximal deviation of M-smoothers," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 163-179, May.
    4. Nicolai Bissantz & Lutz Dümbgen & Hajo Holzmann & Axel Munk, 2007. "Non‐parametric confidence bands in deconvolution density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 483-506, June.
    5. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Bissantz, Nicolai & Birke, Melanie, 2009. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2364-2375, November.
    3. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    4. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    5. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    6. Ma, Jun & Marmer, Vadim & Yu, Zhengfei, 2023. "Inference on individual treatment effects in nonseparable triangular models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2096-2124.
    7. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    8. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    9. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    10. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    11. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    12. Birke, Melanie & Bissantz, Nicolai, 2007. "Shape constrained estimators in inverse regression models with convolution-type operator," Technical Reports 2007,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Wang, Xiao-Feng & Fan, Zhaozhi & Wang, Bin, 2010. "Estimating smooth distribution function in the presence of heteroscedastic measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 25-36, January.
    14. Bissantz, Nicolai & Holzmann, Hajo & Proksch, Katharina, 2014. "Confidence regions for images observed under the Radon transform," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 86-107.
    15. Huang, Danyang & Hu, Wei & Jing, Bingyi & Zhang, Bo, 2023. "Grouped spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    16. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    18. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Adusumilli, Karun & Kurisu, Daisies & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," LSE Research Online Documents on Economics 102692, London School of Economics and Political Science, LSE Library.
    20. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.