IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v22y2010i2p181-195.html
   My bibliography  Save this article

An asymptotic theory for the nugget estimator in spatial models

Author

Listed:
  • Tae Kim
  • Jeong Park
  • Gyu Song

Abstract

The nugget effect is an important parameter for spatial prediction. In this paper, we propose a nonparametric nugget estimator based on the classical semivariogram estimator and describe its large sample distributional properties. Our main results are a central limit theorem and a risk calculation for the estimator when observations are made from a nearly infill domain sampling. From our results, we note that the performance of the estimator depends on the sampling design as well as the choice of bandwidth. In particular, we show that the estimator suffers from strong dependency when d, the dimension of the underlying spatial process, is less than or equal to 2a, a parameter related to the degree of smoothness and dependence of the underlying process. When d>2a, however, the estimator turns out to achieve an optimal rate with an optimal choice of h. We report on the results of simulations to empirically study the estimator.

Suggested Citation

  • Tae Kim & Jeong Park & Gyu Song, 2010. "An asymptotic theory for the nugget estimator in spatial models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 181-195.
  • Handle: RePEc:taf:gnstxx:v:22:y:2010:i:2:p:181-195
    DOI: 10.1080/10485250903193997
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903193997
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250903193997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao Zhang & Dale L. Zimmerman, 2005. "Towards reconciling two asymptotic frameworks in spatial statistics," Biometrika, Biometrika Trust, vol. 92(4), pages 921-936, December.
    2. Lu, Zudi & Tjøstheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3145-3151, December.
    3. Huang, Hsin-Cheng & Chen, Chun-Shu, 2007. "Optimal Geostatistical Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1009-1024, September.
    4. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José León & Carenne Ludeña, 2015. "Difference based estimators and infill statistics," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 1-31, April.
    2. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    3. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    4. Zudi Lu & Dag Johan Steinskog & Dag Tjøstheim & Qiwei Yao, 2009. "Adaptively varying‐coefficient spatiotemporal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 859-880, September.
    5. Kiselák, Jozef & Stehlík, Milan, 2008. "Equidistant and D-optimal designs for parameters of Ornstein-Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1388-1396, September.
    6. Girard, Didier A., 2020. "Asymptotic near-efficiency of the “Gibbs-energy (GE) and empirical-variance” estimating functions for fitting Matérn models - II: Accounting for measurement errors via “conditional GE mean”," Statistics & Probability Letters, Elsevier, vol. 162(C).
    7. Maroussa Zagoraiou & Alessandro Baldi Antognini, 2009. "Optimal designs for parameter estimation of the Ornstein–Uhlenbeck process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 583-600, September.
    8. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    9. Siddhartha Nandy & Chae Young Lim & Tapabrata Maiti, 2017. "Additive model building for spatial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 779-800, June.
    10. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    11. Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
    12. Alain Pirotte & Jesús Mur, 2017. "Neglected dynamics and spatial dependence on panel data: consequences for convergence of the usual static model estimators," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 202-229, July.
    13. Werner Müller & Milan Stehlík, 2009. "Issues in the optimal design of computer simulation experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 163-177, March.
    14. Chen, Yin-Ping & Huang, Hsin-Cheng & Tu, I-Ping, 2010. "A new approach for selecting the number of factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2990-2998, December.
    15. Lim, Chae Young & Stein, Michael, 2008. "Properties of spatial cross-periodograms using fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1962-1984, October.
    16. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    17. Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Frederik J. Simons, 2022. "The Debiased Spatial Whittle likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1526-1557, September.
    18. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
    19. Wenning Feng & Abdhi Sarkar & Chae Young Lim & Tapabrata Maiti, 2016. "Variable selection for binary spatial regression: Penalized quasi‐likelihood approach," Biometrics, The International Biometric Society, vol. 72(4), pages 1164-1172, December.
    20. Chung‐Wei Shen & Chun‐Shu Chen, 2024. "Estimation and selection for spatial zero‐inflated count models," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:22:y:2010:i:2:p:181-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.