IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v25y2009i5p583-600.html
   My bibliography  Save this article

Optimal designs for parameter estimation of the Ornstein–Uhlenbeck process

Author

Listed:
  • Maroussa Zagoraiou
  • Alessandro Baldi Antognini

Abstract

This paper deals with optimal designs for Gaussian random fields with constant trend and exponential correlation structure, widely known as the Ornstein–Uhlenbeck process. Assuming the maximum likelihood approach, we study the optimal design problem for the estimation of the trend µ and the correlation parameter θ using a criterion based on the Fisher information matrix. For the problem of trend estimation, we give a new proof of the optimality of the equispaced design for any sample size (see Statist. Probab. Lett. 2008; 78:1388–1396). We also show that for the estimation of the correlation parameter, an optimal design does not exist. Furthermore, we show that the optimal strategy for µ conflicts with the one for θ, since the equispaced design is the worst solution for estimating the correlation. Hence, when the inferential purpose concerns both the unknown parameters we propose the geometric progression design, namely a flexible class of procedures that allow the experimenter to choose a suitable compromise regarding the estimation's precision of the two unknown parameters guaranteeing, at the same time, high efficiency for both. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Maroussa Zagoraiou & Alessandro Baldi Antognini, 2009. "Optimal designs for parameter estimation of the Ornstein–Uhlenbeck process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 583-600, September.
  • Handle: RePEc:wly:apsmbi:v:25:y:2009:i:5:p:583-600
    DOI: 10.1002/asmb.749
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.749
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J P C Kleijnen & W C M van Beers, 2004. "Application-driven sequential designs for simulation experiments: Kriging metamodelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 876-883, August.
    2. Hao Zhang & Dale L. Zimmerman, 2005. "Towards reconciling two asymptotic frameworks in spatial statistics," Biometrika, Biometrika Trust, vol. 92(4), pages 921-936, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiselák, Jozef & Stehlík, Milan, 2008. "Equidistant and D-optimal designs for parameters of Ornstein-Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1388-1396, September.
    2. Girard, Didier A., 2020. "Asymptotic near-efficiency of the “Gibbs-energy (GE) and empirical-variance” estimating functions for fitting Matérn models - II: Accounting for measurement errors via “conditional GE mean”," Statistics & Probability Letters, Elsevier, vol. 162(C).
    3. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    4. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    5. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    6. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    7. Mlakar, Miha & Petelin, Dejan & Tušar, Tea & Filipič, Bogdan, 2015. "GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models," European Journal of Operational Research, Elsevier, vol. 243(2), pages 347-361.
    8. Kleijnen, J.P.C., 2007. "Simulation Experiments in Practice : Statistical Design and Regression Analysis," Discussion Paper 2007-30, Tilburg University, Center for Economic Research.
    9. Scott L. Rosen & Christopher P. Saunders & Samar K Guharay, 2015. "A Structured Approach for Rapidly Mapping Multilevel System Measures via Simulation Metamodeling," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 87-101, January.
    10. Kleijnen, J.P.C., 2006. "White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice," Other publications TiSEM d8c37ad3-f9a5-4824-986d-2, Tilburg University, School of Economics and Management.
    11. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    12. Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
    13. Alain Pirotte & Jesús Mur, 2017. "Neglected dynamics and spatial dependence on panel data: consequences for convergence of the usual static model estimators," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 202-229, July.
    14. D den Hertog & J P C Kleijnen & A Y D Siem, 2006. "The correct Kriging variance estimated by bootstrapping," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 400-409, April.
    15. Werner Müller & Milan Stehlík, 2009. "Issues in the optimal design of computer simulation experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 163-177, March.
    16. Gaofeng Jia & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Andrew B. Kennedy & Jane M. Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    17. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.
    18. Daniel J Klein & Michael Baym & Philip Eckhoff, 2014. "The Separatrix Algorithm for Synthesis and Analysis of Stochastic Simulations with Applications in Disease Modeling," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    19. Stinstra, Erwin & den Hertog, Dick, 2008. "Robust optimization using computer experiments," European Journal of Operational Research, Elsevier, vol. 191(3), pages 816-837, December.
    20. Jize Zhang & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Fatimata Diop, 2018. "Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1225-1253, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:25:y:2009:i:5:p:583-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.