IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i12p1287-1297.html
   My bibliography  Save this article

Bootstrapping MM-estimators for linear regression with fixed designs

Author

Listed:
  • Salibian-Barrera, Matias

Abstract

In this paper, I study the extension of the robust bootstrap [Salibian-Barrera, M., Zamar, R.H., 2002. Bootstrapping robust estimates of regression. Ann. Statist. 30, 556-582] to the case of fixed designs. The robust bootstrap is a computer-intensive inference method for robust regression estimators which is computationally simple (because we do not need to re-compute the robust estimate with each bootstrap sample) and robust to the presence of outliers in the bootstrap samples. In this paper, I prove the consistency of this method for the case of non-random explanatory variables and illustrate its use on a real data set. Simulation results indicate that confidence intervals based on the robust bootstrap have good finite-sample coverage levels.

Suggested Citation

  • Salibian-Barrera, Matias, 2006. "Bootstrapping MM-estimators for linear regression with fixed designs," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1287-1297, July.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:12:p:1287-1297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00026-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Shao, 1990. "Bootstrap estimation of the asymptotic variances of statistical functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(4), pages 737-752, December.
    2. Shao, Jun, 1992. "Bootstrap variance estimators with truncation," Statistics & Probability Letters, Elsevier, vol. 15(2), pages 95-101, September.
    3. Parr, William C., 1985. "The bootstrap: Some large sample theory and connections with robustness," Statistics & Probability Letters, Elsevier, vol. 3(2), pages 97-100, April.
    4. Matias Salibian-Barrera, 2006. "The Asymptotics of MM-Estimators for Linear Regression with Fixed Designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(3), pages 283-294, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleijnen, J.P.C., 2007. "Simulation Experiments in Practice : Statistical Design and Regression Analysis," Discussion Paper 2007-09, Tilburg University, Center for Economic Research.
    2. Kleijnen, J.P.C., 2006. "White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice," Discussion Paper 2006-50, Tilburg University, Center for Economic Research.
    3. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez Gamero, M. D. & Muñoz García, J. & Muñoz Reyes, A., 1998. "Bootstrapping statistical functionals," Statistics & Probability Letters, Elsevier, vol. 39(3), pages 229-236, August.
    2. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    3. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    4. Kleijnen, J.P.C., 2007. "Simulation Experiments in Practice : Statistical Design and Regression Analysis," Discussion Paper 2007-09, Tilburg University, Center for Economic Research.
    5. Casey Quinn, 2005. "Generalisable regression methods for costeffectiveness using copulas," Health, Econometrics and Data Group (HEDG) Working Papers 05/13, HEDG, c/o Department of Economics, University of York.
    6. Marek Omelka & Matías Salibián-Barrera, 2010. "Uniform asymptotics for S- and MM-regression estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 897-927, October.
    7. Rachida Ouysse, 2011. "Computationally efficient approximation for the double bootstrap mean bias correction," Economics Bulletin, AccessEcon, vol. 31(3), pages 2388-2403.
    8. Duarte Gonc{c}alves & Bruno A. Furtado, 2024. "Statistical Mechanism Design: Robust Pricing, Estimation, and Inference," Papers 2405.17178, arXiv.org.
    9. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn & Zhipeng Liao, 2014. "Asymptotic Efficiency of Semiparametric Two-step GMM," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 919-943.
    10. Haolun Shi & Jiguo Cao, 2022. "Robust Functional Principal Component Analysis Based on a New Regression Framework," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 523-543, September.
    11. Jinyong Hahn & Zhipeng Liao, 2021. "Bootstrap Standard Error Estimates and Inference," Econometrica, Econometric Society, vol. 89(4), pages 1963-1977, July.
    12. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    13. Jason S. Byers & Jeff Gill, 2022. "Applied Geospatial Bayesian Modeling in the Big Data Era: Challenges and Solutions," Mathematics, MDPI, vol. 10(21), pages 1-23, November.
    14. Wei Luo & Bing Li, 2016. "Combining eigenvalues and variation of eigenvectors for order determination," Biometrika, Biometrika Trust, vol. 103(4), pages 875-887.
    15. Cuevas, Antonio, 1992. "On the estimation of the influence curve," UC3M Working papers. Economics 2844, Universidad Carlos III de Madrid. Departamento de Economía.
    16. Antonio Cuevas & Juan Romo, 1997. "Differentiable Functionals and Smoothed Bootstrap," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(2), pages 355-370, June.
    17. M. Rajarshi, 1990. "Bootstrap in Markov-sequences based on estimates of transition density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 253-268, June.
    18. Arup Bose & Probal Chaudhuri, 1993. "On the dispersion of multivariate median," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 541-550, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:12:p:1287-1297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.