IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v72y2005i4p299-311.html
   My bibliography  Save this article

VaR is subject to a significant positive bias

Author

Listed:
  • Inui, Koji
  • Kijima, Masaaki
  • Kitano, Atsushi

Abstract

This article shows that value-at-risk (VaR), the most popular risk measure in financial practice, has a considerable positive bias when used for a portfolio with fat-tail distribution. The bias increases with higher confidence level, heavier tails, and smaller sample size. Also, the Harrell-Davis quantile estimator and its simulation counterpart, called the bootstrap estimator, tend to have a more significant positive bias for fat-tail distributions.

Suggested Citation

  • Inui, Koji & Kijima, Masaaki & Kitano, Atsushi, 2005. "VaR is subject to a significant positive bias," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 299-311, May.
  • Handle: RePEc:eee:stapro:v:72:y:2005:i:4:p:299-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00063-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Luc Prigent & Vijay Pant & Weita Chang, 2001. "An empirical comparison of methods for incorporating fat tails into value-at-risk models," Post-Print hal-03679682, HAL.
    2. Eckhard Platen & Gerhard Stahl, 2003. "A Structure for General and Specific Market Risk," Computational Statistics, Springer, vol. 18(3), pages 355-373, September.
    3. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    4. Masaaki Kijima & Masamitsu Ohnishi, 1996. "Portfolio Selection Problems Via The Bivariate Characterization Of Stochastic Dominance Relations1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 237-277, July.
    5. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    2. Kim, Joseph H.T., 2010. "Bias correction for estimated distortion risk measure using the bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 198-205, October.
    3. Takashi Isogai, 2014. "Benchmarking of Unconditional VaR and ES Calculation Methods: A Comparative Simulation Analysis with Truncated Stable Distribution," Bank of Japan Working Paper Series 14-E-1, Bank of Japan.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryohei Kawata & Masaaki Kijima, 2007. "Value-at-risk in a market subject to regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 609-619.
    2. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    3. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    4. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    5. El Bouhadi, Abdelhamid & Achibane, Khalid, 2009. "The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?," MPRA Paper 19482, University Library of Munich, Germany.
    6. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    7. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    8. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    9. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
    11. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    12. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    13. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    14. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    15. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    16. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    17. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    18. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    19. Kamila Sommer, 2014. "Fertility Choice in a Life Cycle Model with Idiosyncratic Uninsurable Earnings Risk," Finance and Economics Discussion Series 2014-32, Board of Governors of the Federal Reserve System (U.S.).
    20. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:4:p:299-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.